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ABSTRACT: -* The kinematics of manipulators is studied. A model is
presented which allows for the systematic description
of new and existing manipulators.

Six degree-of-freedom manipule  ors are studied. Several
solutions to the problem of finding the manipulator
configuration leading to a specified position and orien-
tation are presented. Numerical as well as explicit
solutions are given. The problem of positioning a multi-
link digital arm is also discussed.

Given the solution to the position problem, a set of
heuristics is developed for moving a six degree-of-~
freedom manipulator from an initial position to a
final position through a space containing obstacles.
This results in a computer program shown to be able
to direct a manipulator around obstacles.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).



THE KINEMATICS OF MANIPULATCRS UNDER COMPUTER CONTROL

ABSTRACT

This dissertation is concerned with the kinematic analysis of
computer controlled manipulators. Existing industrial and experimental
manipulators are cataloged according to a new model which allows for the
systematic description of both existing and new manipulators.

This work deals mainly with manipulators consisting of six degree-
of-freedom open c¢hains of articulated links with either turning (revolute)
or sliding (prismatic) joints. The last link called the '"hand'" is the
free end of the manipulator and has additional motion capabilities which
make it possible to grasp objects.

The following problem is discussed: given the desired hand position
and orientation along with the various link parameters defining the
structure, what are the values of the manipulator variables that place
the hand at the desired position with the desired orientation? Solutions
to this problem are presented for any six degree-of-freedom manipulator
with three revolute joints whose axes intersect at a point, provided the
remaining three joints are revolute or prismatic pairs. These results
can be expressed as a fourth degree polynomial in ~ne unknown, and closed
form expressions for the remaining unknowns.

It is shown that this is equivalent to the kinematic analysis of all
single loop five-bar mechanisms with one sphirical joint and four joinis
which are revolute or prismatic pairs. The extension to the case where
only one pair of axes intersect is discussed. A similar solution for

any manipulator with three prismatic joints is also given.
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A numerical procedure based on velocity methods is developed to
analyze manipulators which cannot be "solved' explicitly. This pro-
cedure is found to be superior to the widely used Newton-Raphson
techuique.

The problem of positioning a '"digital arm" (i.e., a multi-link
manipulator where each joint is only capable of several digital steps)
is discussed. A simple searching algorithm using a look-ahead scheme
is developed. A two-dimensional model and three-dimensional model are
studied.

Given the solution to the position problem, a set of heuristics is
developed for moving a six degree-of-freedom manipulator from an initial
position to a final position through a space containing obstacles. A
mathematical model of objects is developed so that possible conflict
between objects and any link of the manipulator can be detected and
avoided,

Some considerations in choosing a manipulator for use with a
computer are discussed. A set of computer programs - in FORTRAN IV -
are developed to perform the position analysis and trajectory generations

for any six degree-of-freedom .manipulator with turning joints.
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CHAPTER 1

INTRODUCTION

Remote manipulation involves having a machine perform tasks
requiring human dexterity. Originally, the purpose of a manipulator
was to protect man from the hazards of performing the work himself.

With the advance of technology, the variety of tasks performed in hostile
environments has increased. In addition the scope of the tasks performed
by machines has broadened, so that it is desirable for machines to extend
the capabilities of men and to replace men at tedious as well as dangerous
jobs. Although, today, many processes and machines are automatically
controlled, the problems of remote manipulation have yet to be fully
solved.

One approach to this problem is to use a digital computer to control
a manipulator. Then with information obtained from visual as well as
other sensory feedback, the computer would hopefully be able to direct
the manipulator to perform tasks requiring some intelligence as well as
dexterity.

This dissertation is concerned with the kinematic problems that
arise when a manipulator is subjected to computer control. These include
the problems of position analysis and trajectory generation.

In Chapter II, we discuss the classification and the description of
manipulators, including a catalog of most of the existing commercial and

special purpose manipulators.



The position problem is discussed in Chapter 11I. There we present
methods to find values for the manipulstor variables that will place the
terminal device at a given position.

In Chapter 1V, we present numerical methods that may be used to
analyze manipulators too complex for analytic solution as described in
Chapter III.

The problems of positioning a digital manipulator are discussed in
Chapter V.

Trajectory generation - the problem of moving a manipulator from a
given initial position to a specified final position - is studied in
Chapter VI.

In Chapter VII we briefly discuss some considerations in choosing
a manipulator for control by computer,

Chapter VIII presents the conclusions and some suggestions for

future work.

In the next section we present a brief history of remote manipulation.

This is followed by a summary of related work on intelligent automata.
Since much of the research related to the position problem has occurred

outside these fields, we discuss that work in Chapter III. 1In the last

section of this chapter, the contribution of this dissertation to current

research is presented.

1.1 History of Remote Manipulation

The development of remote manipulators followed closely the
development of atomic energy. As the radiation level of atomic energy
increased, so did the hazard to the operator. Thus, shielded environ-
ments and equipment to handle the material were needed. Early

-2-
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experiments were carried out using tongs in shielded caves. For more
complex experiments it was deemed necessary to develop remote controlled
manipulators. It was felt that general purpose manipulators could be
used to replace much special purpose equipment. Thus in 1947, the
Argonne National Laboratory began research into remote manipulators and
related equipment. The first manipulators built at Argonne had six
degrees-of-freedom controlled by mechanical drives plus a hydraulically
operated grip. Later versions were driven by electric motors. They
worked well for simple tasks. However, there was no force feedback,
making it difficult to perform experiments where articles came into
contact with one another [1].*

In 1948 the people at Argonne decided to develop manipulators
having force feedback with motion capability analogous to that of the
human hand. This led to master-slave manipulators in which the motion
of the master was mechanically coupled to the slave so that the forces
in the slave would be approximately reflected in the master. Several
versions of these were built at Argonne. One of these, the Model 8, has
been produced by several companies and is commercially available [1, 2,
3, 4J.

Although these mechanically coupled manipulators perform quite well,
they have several drawbacks. The main disadvantage is the mechanical
connection which requires the master and slave to be physically close

together. This also means that the shielding enclosure must bz designed

*Numbers in brackets designate references in the Bibliography (P. ).
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for the linkage. 1In addition the strength of the slave is limited by the
strength of the operator's hand. These disadvantages are offset in part
by the fact that the manipulators are fairly inexpensive and are able to
perform intricate operations [1, 2, 3, 4, 5}

Externally powered master-slave manipulatcrs using force reflecting
servos have been developed by both Argonne and the General Electric
Company. The Argonne machine is controlled with electromechanical servos
while General Electric's (''Handyman'") is hydro-mechanically controlled.
These manipulators have proved as effective as the mechanically connected
master-slaves. They have the advantage that the only connection between
master and slave is an electrical cable. 1In addition, they have a
variable force feedback ratio. However, their use is not as widespread
as the mechanical type. Perhaps this is due to their high cost and the
complexity of the force reflecting servo system [1, 6 1

Powered manipulators, not of the master-slave type have also been
successfully developed by General Mills, Inc., Programmed and Remote
Systems Corporation, AMF, General Electric, Westinghouse Electric Company,
FMC, among others. They are often used in radiation experiments along
with the more precise master-slaves. They are also used in an under-
water environment on submarines [/, § . Electric and hydraulic-powered
prosthetic arms have also been developed [, 10]. All these are generally
controlled by joy sticks, toggle switches, or similar devices.

All of the above mentioned manipulators require the presence of a
human operator. In their design much effort is made to have an inte-
grated man-machine system. This is reflected in the research of

Mosher [b, 11], Goertz [12), and Bradley [13]) whose emphasis is directed

A
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towards developing systems in which the operator does not feel his
remoteness but is made to feel as if he werr performing the task him-
self. This is accomplished with force reflecting servo-systems giving
kinesthetic feedback similar to what a human would feel. Such work will
have application in materials-handling, underwater work, and perhaps
earth-moving equipment. It also may be applicable to problems of remote
master-slave manipulators with time delay. Farrell [14] has indicated
the feasibility of such schemes.

There are some problems that the master-slave system does not
adequately solve. Since the master-slave system by definition requires

a master, it does not remove the tedium that is basic to most manipulati

ve

tasks. In addition, for exploratior of space, the time delay will become

excessive for anything further distant than the moon. Thus we have

motivation to develop manipulator systems with intelligence.

1.2 Intelligent Automata

Computer-manipulator systems such as AMF's Versatran and Unimation,

Inc.'s Unimate [16] are presently in use in industrial materials-handling

situations. These machines are programmed to move through a pre-determined

series of positions. They are used on assembly lines to unload punch

presses, conveyor beits and similar fixed cycle type operations. Working

three shifts a day, they can economically compete with human operators
However, they do not have any decision making ability, so that, if the
parts are not in the right position or if the cycle time varies, these
machines will not operate successfully. In addition they must be re-
programmed for slight changes in the process. It is thus desirable for
such systems to incorporate decision making capabilities.

-5
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Ernst [18) , using a manipulator equipped with sensory feedback,
developed a hand-computer system capable of stacking blocks. His system
was able to learn about its environment with information gained from
touch sensors. The work at MIT's Project MAC [19] has recently extended
the work of Ernst to include visual inputs and to develop a hand-eye
system capable of manipulating objects. The aim of Project MAC is to
develop an autonomous system with vision capable of performing manipulative
tasks requiring increasing levels of decision making ability.

Rosen, Nilsson, Raphael, {20, 21, 22], and others at Stanford
Research Institute have developed a mobile vehicle under computer control
that performs tasks in a real environment. The primary goal is to develop
a system receiving visual and other sensory information from the vehicle,
and then use this information to direct the vehicle towards the completion
of tasks requiring the abilities to plan ahead and learn from previous
experience.

Other research in manipulator-computer systems has been in using
small digital computers to assist rather than replace operators in manipu-
lative tasks. Beckett (23] at Case Institute, has developed such a system [
in which a typical use of the computer is to find minimum transit time
paths and direct the manipulator around predefined obstacles. 1In obstacle j
avoidance his routines keep the hand outside of effective boundaries
placed around obstacles. l-

The Supervisory Controlled Manipulator, is again a system with
limited intelligence intended to assist rather than replace an operator.
For this system Whitney 24) developed a state-space model of manipulative

tasks. He shows that tasks, such as pushing blocks on a table, or

-6~

—




|

—

-

I

deciding how many and in what order blocks should be moved or pushed
aside in order to position a new block, may be expressed in terms of
discrete state spaces. A state is defined to be the configuration of
the task site.

The Hand-Eye Project, of the Stanford Artificial Intelligence
Project [25 , is oriented toward solution of computer supervised hand-
eye problems of increasing complexity. Current work is on basic problems
involving manipulation of simple cbjects and analysis of visual data.
Eventually it is hoped that the system will be developed to the point

of being able to assemble machines.

1.3 Contributions of this Dissertation

In Chapter 1I the description of manipulators is put on a systematic
basis. We present conditions leading to degeneracy in six degree-of-
freedom manipulator and conditions in which combinations of one degree-
of-freedom joints are kinematically equivalent to more complex joints.
Finally, a catalog of existing manipulators is presented.

The main analytical work is presented in Chapter III. Here solutions
to the position problem are discussed. Methods are given to solve any
six degree-of-freedom manipulator containing three revolute joints,
whose axes intersect at a point, provided the remaining three joints
are revolutes or sliders. The extension of the method to more difficult
arrangements is dealt with in the case where only one pair of revolute
axes intersect. A method of solution for a six degree-of-freedom
manipilator with three prismatic joints is also presented.

In Chapter IV a numerical procedure based on velocity methods is
developed to analyze manipulators whose solutions cannot be expressed

-7- o



as in Chapter I111. This procedure, along with the more conventional
Newton-Raphson method are programmed for a digital computer and the
results compared.

In Chapter V methods are developed to place the end of a new type of
digital manipulator at a specified position. A simple searching
algorithm is made more powerful by the addition of look-ahead. The three
dimensional problem is attacked with insight gained from studying a
planar model.

The trajectory generation problem is discussed in Chapter VI. A
set of heuristics is given for moving the manipulator from an initial
sosition to a final position through a space containing obstacles.
Possible conflict between all links of the manipulator and nearby
obstacles is detected, and hopefully avoided.

In Chapter VII some considerations in choosing a manipulator for use
with a digital computer are discussed. The desirability of being able to
arbitrarily locate the hand throughout the workspace brings up the problem
of zones. Some insight into this problem is presented.

Much of the above has been programmed and tested on a digital
computer. In particular the numerical solutions and the heuristics for
trajectory generation have been programmed to result in a fairly general
kinematic package. With only smallimodification these routines could

be used with any six degree-of-freedom ranipulator.
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CHAPTER II

CLASSIFICATION OF MANIPULATORS

2.1 The Basic Model

In order to analyze and compare manipulator configurations, it is
desirable to develop a mathematical model that can be used to describe
all manipulators. A manipulator is considered to be a group of rigid
bodies or links. These links are connected and powered in such a way
that they are forced to move relative to one another in order to posi-
tion a hand or other type of terminal device. The first link is assumed
connected to ground by the first joint while the last link is free and
contains the hand. In addition, each link is connected to at most two
others so that closed loops are not formed. For the purpose of this
work, the assumption is made that the connection between links (the
joints) have only one degree-of -freedom. With this restriction, two
types of joints are practical — revolute and prismatic.* A revolute
joint only permits rotation about an axis, while the prismatic joint
allows sliding along an axis with no rotation. A schematic representa-
tion of these joints is shown in Fig. 2.1. If a manipulator is considered
to be a combination of links and joints, with the first link connected
to ground and the last link containing the terminal device, it may
be classified by the type of joints and their order. For example, a

manipulator comprised of three revolute jointe, a prismatic joint,

*Although others might wish to include screw joints, we feel that the
difficulties encountered in building screw joints make them impractical.



and two revolute joints, in that order, would be designated 3R-P-2R,
where R is used tor a revolute and P for a prismatic joint.

Given a broad classification according to the joints, a sub-grouping
is made by looking at the links. Now, each joint has an axis associated
with it, and two adjacent axes are connected by a link. Thus a link
description ic just the description of the relation between two adjacent
axes. A link model, shown in Fig. 2.2, has the following parameters:

ay: The common normal between the axis of the ith joint and the

axis of the (i+1)EE joint.

sy: The distance between the lines a, and aj.) measured along

the positive direction of the axis of the ifh joint.

6,: The rotation of the line ay relative to the line aj.) about
the axis of the ith joint.

a,: The angle between the (i+1)£ﬂ axis and the ith axis. The
positive sense is determined according to the right-hand
screw rule with the screw taken along aj pointing from the
A+ to the 18R axis.

If the joint i 1is a revolute, then aj, sy and aj are constants
while 04 1is the variable associated with that joint. 1If joint 1 s
a prismatic joint, then a;» ay and 9i are constants while 84 is
the variable. The sub-classification is then made according to the
non-zero a; and 8y - For example, if all the aj and sy of a

4R manipulator were non-zero, it wouid have the sub-classification
sjaj)sjpajsjajs,a, or if a) =8, = Sq = 0 it would be of the type
sjajgajs,ay,. It may be noted that for the last link, 1 = n, ana and

s, are not well defined as axis n+l 1is non-existent. For this reason,

-10-
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if the last joint is a revolute, the parameters of the last link will
not be “‘ncluded in the description. 1If, however, the last joint is a
prismatic then 8, will be included. For the first link e; has an

arbitrary reference that will be considered zero so that 8y will be

included only if the joint is prismatic. An example of a %R, sjapsy

is shown in Fig. 2.3.

2.2 Special Cases: Degeneracy and Kinematic Equ’ alence

The most general manipulator has all non-zero link parameters.
However, in practical manipulators there are many zero parameters which
lead to special cases of interest. The first is degeneracy. This
exists when the number of degrees-of-freedom of the last link is less
than the number of joints. A manipulator with more thsen six joints
would be classified in this category, as a rigid body can have a maximum
of six degrees-of-freedom. The existence of four or more prismatic
joints leads to degeneracy, since motion from one jnint can in general
be obtained as a linear combination of the motion of the remaining
three. Also, if four or more revolute axes always intersect at a
point, then rotation about one axis can be expressed as a combination
of rotations about the other three. Special values of the parameter: o
can also lead to degeneracy. An example is given by those values of ¢
for which four revolute axes are always parallel, and hence normal to
the same plane.

In addition to degeneracy, non-zero parameters may make combina-

tions of revolute and prismatic joints kinematically.equivalent to

more complex joints. Thus if three revolute axes intersect at a point

-11-
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Figure 2.2. The Link Model.
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Figuie 2.3. Schematic of a 4R, sjajsq manipulator.
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they are equivalent to a spherical joint whicih we denote by the symbol
S. Also, if the axes of a revolute and a prismatic joint coincide, they
are equivalent to a cylindrical joint denoted by the symbol C.

A 4R manipulator may be used to illustrate these special cases.
The most general case is shown schematically in Fig. 2.4a. A sufficient
condition for two axes to intersect is that their common normal be
zero. For example 1if a, is zero, then axes 2 and 3 intersect
(Fig. 2.4b). For three axes to intersect at a point, the two common
normals, as well as the displacement along the intermediate axis must
be zero. For example, if a, = ay = $4 =0, the result is equivalent
to a spherical joint and the 4R manipulator is kinematically equivalent
to an S-R manipulator (Fig. 2.4c). For four axes to intersect at a
point (resulting in degeneracy), three adjacent common normals, and the
displacements along the two intermediate axes must be zero (Fig. 2.4d).
Degeneracy also occurs if the equivalent of two spherical joints exist.
In this case, it is possible for the link connecting the two sphere
centers to rotate about itself.

A cylindric joint results when the common normal and the angle
between a revolute and adjacent prismatic joint are both zero. An
example of an R-P-R being equivalent to an R-C manipulator is shown

in Fig. 2.5.

2.3 A catalog of Manipulators

With the above scheme we may classify most of the manipulators that
have been built in the last several years. Some manipulators since

they contain a very large number of links are omitted fram the table.
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Figure 2.4,

(a)
(b)
(c)
(d)

Sy

a,

(d)

A general 4R,a.s a,s,a, manipulator.

A 4R,a13283 wi%hzo%e3pair of intersectirg axes.

A 4R,a.s. “manipulator and spherical equivalent,

A degenérate 4R manipulator.
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Figure 2.5,

(a)

(a)

(b)

An R-P-R manipulator
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These generally have a snake-like structure, and even though these
manipulators may fit into the basic model they contain many joints
usually with limited freedom in each joint and similar link parameters
for all links. We call such manipulators "ORMS'* and consider them
separately in Chapter 5.

Tatle 2.1 contains a catalog of some recently built manipulators.

*ORM i{s the Norwegilan word for snake.
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CHAPTER III

SOLUTIONS

3.1 Statement of the Problem

In remote manipulation it is desirable to place a rigid body (the
hand) at a specified position in space with a specified orientation.
Thus, a manipulator needs to have at least six degrees-of-freedom. More
joints than six lead to a problem that is not deterministic with the
specification of hand position and orientation. We therefore limit this
work to manipulators with six degrees-of-freedom.

The problem we wish to solve may be stated as follows: given the
desired hand position and orientation, along with the various link
parameters, find the values of the manipulator variables that place the
hand at the desired position with the desired orientation. This problem
is related to the displacement analysis problem in three dimensional
kinematics.

The result of the displacement analysis of a mechanism is the
relationships between input and output. That is, if cne link is driven
in a prescribed manner, we wish to find the resulting position of the
rest of the mechanism.

The most general one degree-of-freedom, single loop mechanism is the

so-called "

seven-bar chain'. This mechanism is composed of seven one
degree-of-freedom joints connected to one another in a general manner to

form a single closed loop. Mechanisms comprised of spherical and

cyclindric joints may be derived from this seven bar by an appropriate

-19-



choice of link parameters leading to kinematic equivalence, as discussed
in Chapter 1I.

If one considers a seven bar mechanism wliere one link is considered
fixed, while an adjacent link is driven relative to it by motion in the
connecting joint, then the position and orientation of the driven link
are known. The problem of displacement analysis is to find the
resultant configuration of the mechanism, or equivalently the motion in
each of the remaining six joints. We then observe that the manipulator
problem resulting from specifying hand position and orientation is
analogous to the displacement analysis problem resulting from driving one

of the links.

3.2 Survey of Existing Solutions

Although displacement analysis of mechanisms has been of interest
to kinematicians for many years, no method has been developed that can
be applied to all cases. Dimentberg [40, 41) obtained solutions for
several four-link mechanisms using screw algebra and Dual numbers. He
also reduced the five-link RCRCR mechanism to the solution of a single
polynomial of degree eight. Yang (b2] using dual number matrices, was
able to express the input-output relation of this mechanism as a single
polynomial of degree four. Others have used (2x2) dual matrices, dual
quaternians, and vector methods to obtain solutions of four link
mechanisms W3, 44, 45}, The (4x4) matrix method developed by Denavit
and Hartenberg [ 46] has also been used to analyze four-link mechanisms
{47, 48). For more than four links, this method has been applied using
iterative numerical techniques (9], Urquardt |50) showed that solutions
were possible where the mechanisms had three or more prismatic pairs.

20- l



Earnest (51J has found geometric solutions to several special
manipulator configurations. We present his solution to the manipulator
shown in Figure 3.1:

Referring to Figure 3.1, it can be seen that the
point Q lies on a line formed by the intersection
of a plane perpendicular to axis 1 containing line
Jl , and the plene perpendicular to axis 6 containing
4, . In addition Q must lie on a sphere with P

as a diameter. The intersection of the line and the
sphere thus fix Q .

Sharpe [52] studies the problem of placing the end of a snake-like
chain (which could be used as a manipulator) at a specified target. An
"n-link snake" is composed of n links connected with revolute joints
to form a planar chain. The joints in general have continuously variable
angles. However, he does discuss the case where angles may take on

only two values. He presents an adaptive approach using a simple searching

procedure to handle this case.

AXIS 6 —=

Figure 3.1. Example manipulator used to demonstrate geometric solution.
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3.3 Method of Solution

In this work, we use (4x4) matrices to attack the manipulator
problem. Solutions for manipulators containing three intersecting
revolute axes are presented. The most complex of these requires the
solution of a single polynomial of degree four. This is equivalent to
the solvtions of all single loop five-bar mechanisms containing one
spherical joint and the rest either revolute or prismatic. Solut‘ons
for manipulators with any three joints prismatic are also presented. The
extension to more difficult problems is discussed witha 6R, a,a,

manipulator having adjacent axes orthogonal used as an example.

3.3.1 Notation

Throughout the text we use scalar, vector, and matrix quantities,

).

Matrices are denoted by capital letters and may have subscripts (e.g., A2
Vectors are denoted by underlined letters and may have subscripts and one
or more superscripts in front of the letter. Vectors are generally used
to locate points relative to a coordinate system. The subscripts are used
to differentiate between points, while the superscript indicates the coor-
dinate system to which the point is referenced (e.g., i+1§p , would repre-
sent a vector from Lhe origin of coordinate system i+l to a point n).

I1f no superscript appears it iy assumed to be 1 , or else no origin is
implied. At times we wish to express a vector in a coordinate system which
differs from the one in which the vector is formed (the so-called 'renfer-
ence system"). If the system used to express these coordinates is different
from the reference system, we enclose the vector in brackets and use an-

ot!'~iv saperscript to denote the svstem in which the conpouunnts are expressed

—
i| i+l
(e.g., l gﬂ] ). 1f£ the outer superscript is not used, it is assumed

-22-
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to be the same as the inner superscript. Scalar quantities are written
as lower case letters, with or without subscripts (e.g., a;s; ). If
they represent coordinates of points, then a superscript is sometimes
used to designate the coordinate system to which they refer. Where no
superscript is used, the number 1 1is implied. Angles are denoted by
lowver case Greek letters with or without subscripts (e.g., bl ay.
Points are occasionally given a name (e.g., "the point X, ") and
referred to by name.

The trigonometric functions sin, cos, and tan are abbreviated
s, ¢, and t respectively (e.g., sin 51 is written s*’1 , cosQ 1

as ca, , etc).

3.3.2 Mathematical Preliminaries

In order to analyze the kinematics of a manipulator, we first
establish the relation between two Cartesian coordinate systems as
shown in Figure 3.2, We define the following:

the length of the common normal between iz-axis

a;:

and 1+1z-axis o
i+1 i ]

ai: the angle between z and “z measured in the

right-handed sense from iz along a line from 1:
i+l

to z .

sy: distance from 0i to the common normal a1 o

%: angle the common normal makes with 1¢-axis.

Then there exists the transformation [46] to express the coordinates cf
a point in one system given its coordinates in the other. If we denote

the coordinates in system i by (ix, 1y, iZ) and in system i+l by

i+l

(i+1x , we define the vectors #& and X such that:

1+1y’ i+1§)

-23-



and

so that the transformation is:

i
X = &, 1

where

cﬁii -st)icc.i s()isc.i
sei cgicc.i -ceisc.i

0 s(:.i c(:.i

0 0 0

The inverse also exists and is defined by:

i -
+1§ % Ai 1 15
where

—

cg, 88, 0
-1 -sE!icc.i cbsa  sQ

i -
58150.i ceisc, cQ

-24-
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For n+l coordinate systems there are n transformations between
neighboring systems. These may be multiplied., in the following order,
to give the coordinates in the 1 system of any point fixed in the

n+l system:

r n+1x
o A

X =84, ...
Now to appropriately fix these coordinate systems in a manipulator, we
make Iz correspond to axis 1 , ix to common normal aj.; and
define iy in a right-handed sense. This is shown applied to a sample
maninulator in Figure 3.3. For a six degree-of-freedom manipulator we
write:

Ix = A1A)A48,454¢ X (3.3)
where 15 is a vector to any point, expressed in the ground system
and 75 is a vector to the same point expressed in a system fixed in
the terminal device. We define

Aeq = Ay ... A, . (3.4)

With this definition (3.3) becomes:

15 = Aeq 75 (3.5)
and the inverse yields:
’x = Aeq’! Xx (3.6)

Now, if we let P be a vector from the origin of system 1 to the
origin of system 7, and -{; , m, and n , be three unit vectors
aligned with the 7x, 7y, 7z axes respectively, then when 4£ y M, n,

and P are expressed in system 1, they may be used with equation

(3.5) to find Aeq . That is, using (3.5) we may write

-25-



’x

Figure 3.3. The relationship between coordinate systems fixed
in the manipulator.
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4, 1 m) 0 0 ! 0
_2,2 0 m, 1 ny 0 p2 0
,13 = Aeq| 0O m,| = Aeq} O nj| = Aeq| 1 P3| = Aeq 0
0 0}, 0 0l, 0 0}, 1 1

from which we may solve for the elements of Aeq to obtain:

4 mponyopy
L m n P

heq = |52 n2 o2 52 (3.7)
0 0 0 1

It is thus seen that position and orientation of the terminal device
can easily be found, knowing the manipulator variables, 91 or
Sy» i=l,.., 6 , by the matrix product equation (3.4).

However, for computer control of manipulators, the problem is to
find the manipulator variables, given the terminal position and
orientation (Aeq)

We shall first consider a six-revolute arm and the problem of
finding 91,..., 96 given ABq. Equation (3.4) represents twelve
scalar equations, nine dealing with orientation and three with position.
However, only three of the orientation equations are independent so that
there are six equations in 91,..., 66 . These equations have terms of
the form;

co cez c93 cb, CBS e » (3.8)
591 ch

ch sH4 sGS sbg » .-

2 3

These terms contain both sines and cosines, which we may define in terms

of the tangent of the half-angle.

2¢ é
c@ = s S 0
i e 5, ’ 8y T, (3.9)
2 2
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Then if we substitute (3.9) into the six equations, the typical term,
as shown in (3.8) becomes (letting ti = tan J%i , 1=1,..., 6 , and

removing the denominators which are common):

2 2 2 2 2 2
t:l t2 t3 t4 ts t6 + ...

Thus we see that these equations are quadratic in each of the unknowns
and the degree of the highest degree term is 12.

However, not all the equations contain all of the unknowns and by
judiciously choosing the three orientation equations, the unknowns 91
and 96 can be eliminated from some of the equations. We use the

six equations:

Fi (E)ye0es ts) =0 (3.10)
Fy (Eyeey tg) = 0 (3.11)
Fy (t)s-eey t5) =0 (3.12)
Fy (t25000s tg) =0 (3.13)
Fg (tys-vey tg) =0 (3.14)
Fg (Eg)-en) tg) =0 (3.15)

which are obtained respectively from the '14', '24', '13', '33', '34',
and '32', elements of the matrix of (3.4). We note that (3.10) - (3.14)
do not contain tg » and (3.13) - (3.15) do not contain tl . Of the
five equations in which the variables ty»-+s ts appear at most
quadratically, three equations are of degree 10, while, two are of
degree eight. If we eliminate tl between (3.10), (3.11), and (3.12),

the result is two equations of at most degree eight in the unknowns

ty,..., tg whose total degree is 32. These together with (3.14) and

| 899

(3.15) give us four equations for t,,..., tg . Proceeding in this

-28-




manner eliminating one variable at a time, we would finally obtain a
single polynomial of degree 524,288. Even though this method of
elimination introduces extraneous roots, we would still expect, according
to Bezouts' theorem¥, (10)3 X (8)2 or 64,000 common roots, a number much
too large to cope with. The general problem, attacked in this manner,
is insoluble. At this point we shall define a 'soluble case' to be one
in which the degree of the final eliminant is low enough to find all
ronts. In practice all the roots of an eighth degree polynomial can be
found within a few seconds using a digital computer and the roots of a
fourth degree within one-half second. A solution is said to be
"closed-form" if the unknowns can be solved for symbolically.

Even though the general problem is beyond reach, many practical
manipulator configurations are soluble. The existence of three revolute
axes intersecting at a point leads to a soluble class. In the next

sections we explore the possible combinations of three intersecting axes.

3.3.3. Last Three Axes Intersecting

If the last three joints are revolutes and their axes intersect
as in Figure 3.4, then their point of intersection, as designated by the
vector P3 is only a function of motion in the first three joints and

the constant link parameters. 23 is known by specifying the hand

position and orientation. We want to solve the three scalar equations
represented by:

0
By = A, 0 (3.16)
ja

*Bezouts' theorem gives an upper bound to the number of common solutions
for a set of equations. The upper bound is the product of the total
degrees of all the equations.
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B
Figure 3.4. The most general manipulator having the last three revolute

axes intersecting.
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for the variables associated with the first three joints. We now derive

an important result used in the solution of this problem. We define

the vector P 0

0
By=hA) - A 8 441 (3.17)

1

where Ay (1 =1,..., j) 1is defined in equation (3.1). It is seen
that Ej is a vector specifying the position of a point (0, O, 8j+1)
which is fixed in coordinate system j+l .

We may write (3.17) as

Bj = (AjA,)) Ay ... A

= A1A2 (3.18)
L q
f2(93, ’ j)
s 1 =
where
— — —_
fl 0
f2 0
= Anr ... A (3.19)
f 3 J 8
3 j+1
1 1
Then using (3.1) for A; and Ay (3.18) becomes
celgl + 39132
86)8) - cbg,
By = | fox1ls8(ay + £)) - cBy(-cayf, + sa,fq)] (3.20)
+ cal(sazfz + Ca2f3 + 82) + 51
S 1 —
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where

g, = cez(a2+fp + s92(-ca2f2 + sa2f3) + a)

89 -sﬁzcal(a2+f1) + cHyed (-cAyfy + s%yf4)
+ Sq1(5a2f2 + Ca2f3 + 52)
Denoting the components of fj by Xy s Yj o0 255 v define
- 2 z - 2
Ry = x§ + yj + (35°s))
With (3.20) for the components of (fj) y» (3.23) becomes
Rj = f12 + f22 + f32 + a12 + a22 + 522 + 2a2f1
+ 2s)(s0yf, + ca,fy) + 2a1[C°2(a2+f1)
+ 592(’Cazf2 + SQ.2f3)]

We note from (3.20) and (3.24), that we may write:

Rj = (Flcg2 + F2592)2a1 + F3
Zj = (FISGZ - cmgz)sal + FA
where,
Fl &3 82 + fl

2

2 2 . ¢2 2 2 +
f1 +f2 -rf3 +a1 + 8, +2a2f1 82

(o4
+ 282(8 252 + cq2f3)

F4 = cal(sazf2 + ca2f3+sz)

Equations (3.25) and (3.26) prove to be very useful as 61 has

been eliminated, and #p appears in a very simple form,.
Returning to the manipulator problem, the above equations

apply with j = 3. In which case by using (3.1) for A~ (3.19)

becomes :

32-
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- .. —_
f1 84893&13+83C93
f) = -sac93sa3+a3s93 (3.31)
£3 84m3+53 |

so that with (3.21), (3.22), and (3.31) equation (3.20) represents
three equations in three unknowns. If the first three joints

are prismatic, then (3.20) represents three linear equations and
is easily solved. The other possibilities are somewhat more

difficult, but may be solved as follows:

3 Revolute - 8;, 68,, 647 all variable

Substituting (3.31) in (3.27) - (3.30) yields respectively
F] = az+sase3sq3fa3c93 (3.32)
o2, 2 2, 2,2, 2
Fy = a;"+s,%+a) +857+a, +84 +25253ca2+25254a12a13
+ 253saou3+c93(28283-25254a12a13) + 593(28352a12
+ 28284&13) (3.34)
Now we note that the left hand side of (3.25) and (3.26) are
known and that if a; = 0, (3.25) reduces to
Ry = Fq (3.36)
When (3.34) is used in (3.36) it is simply a function of @3 .
Then making the additional substitution
1= tan? 85
2 (3.37)

1+ tan2 3

2

c93 =

-33-



2 tan 93
593 = 7
1 + tan 93
2

into (3.3%), yields a quadratic in tan 93 . Similar simplifi-
Z

cation results if sa1=0 , as (3.26) reduces to a quadratic. If
however s and a; are non-zero, we eliminate s@,; and c92
from (3.25) and (3.26) to obtain the polynomial

(R3 - F3)2+ (z- F4)2

2 2

= Fl +F,

231 S(Il

(3.38)

(3.39)

Upon making the tan 23 substitution and using (3.27) - (3.30) equation

(3.39) 1is of degree four in tan 83 . After getting 65, 6,
Z
may be obtained from (3.25) or (3.26) and 8; from (3.20).

S$1,_82, 83 _variable
Here we take the x and y components of Py as defined

in (3.20)

X c91g1 + 891g2
y = sGlgl - celg2

Solving for g; and g, we find

g] = xcOp + ysG1

-yc8; + xs91

82

so that g; and g; can be crmputed from 3.42) and (3.43).

Then examining (3.21) and (3.22) using (3.31) we note

8] = cO2h)(8;) + 8850, (83) + a)

L}

-3 -

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)




ry

where

h1 = 84593&13+a3c93 (3.46)
h, = 54(c93ca2sq3+sa2sa3) - a3se3cq2+s3sa2 (3.47)
h3 = 84(‘C93SG,29(13+C(12C(13) + 838938(12

+ s3ca, + 8; (3.48)

If cap =0 then (3.45) is easily solved for 65 . If

cay # 0 we eliminate 6, from (3.44) and (3.45) to get the
polynomial

hy" + hy," - (gl-al) - :
1
L
Expressing s8; and c¢6; in terms of tan 83 leads to a
Z
polynomjal of degree four. Upon obtaining the four roots of

(3.49) we substitute into (3.44) and (3.45) to get O, and

finally (3.20) for 8y -

81, 52, 83 _variable
Solve (3.26) for sy , using this in (3.25) results in a
fourth degree polynomial in tan 33 . Then proceed as in all

revolute case.

91, 95, sy _variable
Similar to 8,6,8, variable with the exception of 84
being the variable in the final polynomial which is of degree

four.

818,83 variable
The left-hand side of (3.44) may be computed from (3.42), then
(3.44) which is quadratfc may be solved for 8 . Finally s and

may be found from (3.20).
«35-
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5192§3 variable
It is possible to eliminate 6, as in the case of 816287

variable, resulting in a quadratic in Sq .

818385 _variable
Equation (3.25) is solved for s; and used in (3.26) resulting

in a quadratic in s3 , 8; 1is found as in the all revolute case,

Methods have been presented to find the first three variables.
At this time we leave the problem of finding the lest three angles to

be dealt with later in this work (see Section 3.3.6).

3.3.4 First Three Axes Intersecting

Next consider the three intersecting axes to be the first
three, as in Figure 3.5. The solution of these is analogous to
the previous exawrcle. We define a vector ?2 from the hand to
the point of intersection of the three axes, as shown in Figure 3.5.
We note that when ?g is expressed in a coordinate system fixed
in the hand, that it is just a function of the last three joints.

That 1is: 0

-1 -1 -1 -1 0

7p =

P = A6 A5 A4 A3 [ (3.50)

0
Usiag (3.2) for A3-1 and forming A3'1 8—| we get
1]

-1, - 1)

-83Cq
3%3
1

-1

7p =
_P‘A6A

5

- -1 -
If we use (3.2) to express Ag 1 » Ag , and Ay 1 then the

right-hand side of.(3.51) just contains the three variables associated
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with the last three joints. In addition, we compute the components

of 72 from

1| 8

72 = Aeq 0
1

where Aeq is the known matrix (3.7). We note that the rotation
-1

portion of Aegq is just the transpose of the rotation portion
of Aeq . In fact, if

a); 412 23 814—7
a a a a

21 “22
Aeq = e (3.52)
831 232 833 234

then
a a a a. "1
11 21 31 14
-1
a a a a

813 923 833 a3,

The elements denoted as aj, > a24'1 , a34'1 are determined by
simply applying
Aeq‘1 Aeq = 1
thus
a;z = -(ajjay, + aya,, + a3ia34) (3.54)
i=1,2,3
From this point on the method of solution follows the same steps given

in Section 3.3.3 for the case of the last three axes intersecting.
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Figure 3.5. General Manipulator in which the First Three Revolute
Axes Intersect at a Point,
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3.3.5 Three Intermediate Axes Intersecting

Another possibility is for the three intersecting axes to be
located as in Figure 3.6, where there are two other joints toward
the base end and one on the hand end. We denote the position of
the point of intersection by X; with the coordinate (x,, Yoo zy)
and define the vector X; from the base of the arm to X; and the
vector 712 from the origin of system 7 to X2 as in Figure 3.6.
Consider the case where all joints are revolutes, then in
system 7, the hand system, the point X, has a fixed z co-
ordinate, and is a constant radius from the origin. We write
the coordinates of X, in system 7, using equation (3.5) and

-1
Aeq as defined in (3.53)

-1
7x2 = allxz + azlyz + 83122 + 814 (3.55)
7 a

-1
722 = aj3y; + a3y, + a3z, + ay, (5.57)

Since 722 is a constant, say C; , (3.57) may be written
> -1
1 = a13%, + a,3Y, + 834z, + aq, (3.58)
We define the constant, Cj, to be the square of the radius
7. 12 2 2
c, = xp% + (yp?+ (722) (3.59)
Then using (3.55), (3.56), and (3.57) for ’x, ’y, and 7z

(3.59) becomes

2 2
Cy = x5 + y% +z; - 2xza14 = 2yqay, - 2zjaq,

+ al,t ad, +a (3.60)

2
34
where (3.54) has been used for 814-1 i=1,2,3
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Figure 3.6.

Manipulator with three intermediate revolute axes inter-
secting ( i.e. a3=34=a4-0 ).

=40~
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With j = 2 (3.20 becomes

[ap(cB1cBp-581885ca;) + s2591&11+alc91 + s3(c91s92512 +

—

561cBycn say+s8 sa;cay) ]
(a;(s8)cB,+cB158yca;) - s5,c8,50) + 356,
P = (3.61)
+ 53(s91s92&12-c9lcezcalsaz-celsaldaz)]
[apsBysa; + spca; + 5] + 84(-cB,sa)sa,+ca cay) ]

1

and (3.27) - (3.30) become

, F, = a, (3.62)

' Fo = 5350 (3.63)
_224

F3 = aytsyta 2+s3+23 s4¢0, (3.64)

F4 = s3ca1ca2+s2 (3.65)

So that using (3.€2) - (3.65) and (3.23), equation (3.39) becomes

(x2+y2+zz-a2 -8, -s -2s s q1-1 Zy)=87C11C00"-8S 2 2 2 2
272 "2 1 23 2773122 . ay+sysa,  (3.66)

2a) 5

Then (3.58), (3.60) and (3.66) are three equations for the unknowns
(x9y9zp). Ordinarily the system would result in an eighth degree eliminant

but since (3.60) and (8.66) may be combined to form

.2 2
(Co#2X98 ), ¥2Y8),% 2985,78 1, o a3,)-81"5,-a7-53-2s 83°;—1

Za1 o
2
2,=8,C0,C0,~S 2
423712 2] . a% + s3sa§ (3.67)
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The equations (3.58) (3.60) and (3.67) may be combined to yield
a single fourth degree polynomial in one variable, say =z .
After the values of z are determined it is possible to back
substitute and obtain corresponding values for x and y .
Once the coordinates (x2, Yo zz) of the point Xz are

found, ©, and O, may readily be found from equation (3.61).

2 1
8y 1s easily evolved by noting:
— = —_
7|
X2 285
7
y 7 - ~8:80g
7 2l= Ty, = a7t g (3.68)
"2 "85%5
1 1
Using (3.2) for A6-1 , with a, = 8¢ = 0, (3.68) becomes:
—_-asc96 - 55596 ]
7

1

Since X9y Y3 and zp are known (3.55),(3.56) and (3.57) may be
used to calculate 712. Then (3.69) may be solved for 8¢ . The
problem of solving for 64 8, 6g will again be deferred (see
Section 3.3.6).

The precudine solution was for all revolute joints. We now

consider the cases in which joints 1, 2, and 6 may be prismatic.

51958, variable
Eliminating s@; and ¢O, between the x- and y- components
of (3.61) results in a quadratic in x, .and y; . Then this equation

-42-
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with (3-58) and (3.60) can be reduced to a single fourth degree poly-

nomial in either X, or yj .

91§2§6 variable
Forming (3.25) and (3.26) with j =2 aud then eliminating s,
between them, a fourth degree equation results in a manner similar

to the all revolute case.

818,8¢ _variable

First s, may be eliminated between the x- and y- components
of (3.61). The resultant is a linear equation which along with (3.58)
and (3.60) can be combined to form a single quadratic.

If sg 1is variable instead of 06 , equations (3.58) and (3.60)
no longer apply. However, the point X7 must lie on a known line.
This line, in the direction of axis 5 may easily be found, and may be
written in terms of two known constant vectors ¢ and b and the

parameter t as:

yo| =c+bt, (3.70)

where b 1is a unit vector parallel to this line and ¢ 1is any fixed
pcint on the line. Eliminating t , yields two equations between
X2 5 Y2 , and 25 . Then with these in place of (3.58) and (3.60),
the procedure is the same as previously indicated.

The second possibility for three intermediate axes to intersect
is as shown in Figure 3.7. This is just an inversion of the case
treated in this section and may be solved in a similar manner.
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3.3.6 Completing the Solution

It can be seen from the foregoing that if three adjacent revolute
axes intersect at a point, then the solution to the problem can be
reduced to a single equation of degree four. If, in addition, two of
the remaining three joints are prismatic, the problem reduces to a
quadratic,

Simplification will also result, if special geometry exist in
addition to the three intersecting revolute axes. C(onsider the all
revolute case, with only a; , ap , and s, non-zero and

O

ay =90° a; =0, a3 = 90°, a, = 90°, ag = 90°, as shown in

Figure 3.8. This is the configuration used for the hydraulic arm at
the Stanford Artificial Intelligence Project. With the above values,
equation (3.17) becomes

F§1c91 + azcelcez + sA(c91c92393+c91392c935__
Py = [a,s8, + a s91c02 + sh(selc92893+301392c93) 3.71)

= 171 2

agsl, + 34(39239 -c92c93)

3
- 1
and (3.27), (3.28), (3.29), and (3.30) become

F| = 82+84893 (3.72)
Ep = 54¢8, (3.73)
Fy = 2&234393 + 542 + 322 + 512 (3.74)
Fo, =0 (3.75)

So that equation (3.25) becomes:

Ry = 842 + 322 + 812 + 2&234393 + Zalazcez + 2als4(c92393

+50,¢85) (3.76)

A

= =



Figure 3.7. Second possibility for the case of the three intermediate
revolute axes, shown intersecting at the point Xy

Figure 3.8. Schematic of the 6R, a,a.s, manipulator used at the o
Stanford Artificial Inkeilzfgence Project, with °(1=9O ,

& = Q:Qo =° =O.
=0, ©¢,=90°, &,=90°, e¢=90

45



and (3.39) becomes: )

“

2 2 .2
+ 22 = (a,48,803)° + 5, “co, (3.77)

which i3 quadratic in 893 when c932 is replaced by 1-8932 c

After finding 93 we compute 92 from (3.71) and (3.76) and 91
from (3.71).

Since the above arm is used in the Stanford Artificfal Intelligence
Project, we shall use it to illustrate the method of finding the angles

associated with the three intersecting axes. Designating the direction

of the i;h axis by the unit vector y; , we write

W, = AjAALA, § (3.78)
0
Using (3.1) for Aj,..., A4 and the above values of o the
result is
[ c0)c0,50, + cO)80,c0, |
W, = |801c8,8083 + 80756,cO, (3.79)

892893 - Cezce3

0 cm—
so that w, wmay be computed from (3.79) as we have solved for 6, ,
92 » and 63 . We is known since the hand orientation is specified.

In additilon,

W, + Ws = cosay (3.80)

Q)S . m6 = COSG,S (3081)

w5 « ws =1 (3.82)
46~
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where L and as

are link parameters of the arm. In fact

a = -90° and qg = 90° . We can find the components of ws by

simultaneously solving (3.80), (3.81) and (3.82).

-1, -1
7&95] = Ag 5

-1
using (3.53) for A6 and AS

(3.83) becomes:

"lw,) -

and

O=OO

with o, = Qg

pum ey

896
c96
0

[ 0]

-1
7':@5] = Aeq g

We observe

(3.83)

= 90° and 0 = 0

(3.84)

(3.85)

where Aeq 1is the known matrix specifying hand position and

orientation equation (3.7). 1Its inverse is found as in Section 3.3.4.

So that we easily derive 96 by equating the right-hand sides (3.84)

and (3.85). We also write

7 1, -1

-1 -
lw,] = A A5 A,

and

0 895c96_1
0 L Ca 995896
1 'CQS

0 0 =]

47~
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which yield 95 . To obtain ©, we proceed similarly

4
0.] r;64c95c96 - c94896
1 - - 0 -80,cO 80 _ - ¢B,cO
Lwg) =4 - s h,t | 45T T T (3.88)
6 4 1 86,805
0 0
L = -
and
7 -1
(W3] = Aeq™" g, (3.89)

which yields 94.

We have indicated a procedure to find the rotation about three inter-
secting revolute axes when these are located at the hand. The method
is applicable when any three axes intersect. However, the equations
must then be rewritten in terms of the w; and ©; associated with

these axes.

3.3.7 Solution for Any Three Joints Prismatic

A six degree-of-freedom manipulator with any combination of three
revolute and three prismatic joints is soluble, This arises from the
fact that, the cvrientation of the hand is independent of the displacement
in the prismatic joints, and is only a function of rotation in the three
revolute joints. In addition the orientation is independent of the
position in space of the revolute axes. ¢{cnsider the manipulator shown
schematically in Figure 3.9. The direction of the first revolute axis
is always fixed. With the hand orientation specified, the direction of
the third revolute axis becomes fixed. In addition we know the angles
which the axis of the second makes with the axes of the first and third

revolutes., If we designate the direction of these revolute axes by the

-48-
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unit vectors, w, , W3 » and W then we may write

mz . 2,.)3 = COBBI (3-90)
m . ms = 00882 (3-91)
w3 - Wy =1 (3.92)

vhere B, and 82 are the known angles. The equations (3.90)
(3.91), (3.92) are then solved for the components of wy . The
joint angles may be found in a manner analogous to that used in
the previous example, as the now known direction Wy » can be
expressed only 23 a function of 92 which leads to a simple
equation for 92 - W, can also be written in terms of 95 alone,

ylelding . . Once 6, and 95 are known, 93 is easily found

5

by rewriting (3.4) as

-1 1, -1, -1

-1 -

Using the values we found for 92 and 95 plus the constant angles,
we compute the rotation portion of the right-hand side of the above
equation. Then writing A3 as in (3.1), we may solve for c93 and
393 s thus finding 93 . The displacements in the prismatic joints may
be found from (3.4). Since all the angles are now known and the s8's
only appear linearly, the displacement portion of (3.4) easily yield

these three unknowns s , 84 9 and s

i

3.3.8 More Difficult Arrangements

In the previous examples, the existence of three intersecting
revolute axes enabled us to separate the problem into two parts -
one dealing with position and the other with orientation. The two

problems were then solved separately. That is we solved a three

49~




degiee-of-freedom pcsition problem and then a three degree-of-freedom

orientation problem., A more difficult problem is one in which position

and orientation do not separate.

revolute axes intersect.

An example is the case where just two

Consider the 6R, a;s,a;s;s,8, 8585 mani-

pulator shown in Figure 3.10, Here axes 3 and 4 intersect.

The vectors

23 » Q,and R are as shown in Figure 3.10. We make the following

observations:

0

g_' A].AZ 0

83

1
-1 =1 ~8380
22 - Ag 1As 3
-33(!13
— 1 —

0

- 0

Wy = AA, 1

| 0
1 o |

7 -1, -1 0

= A

[wg ] = Ag A 4 1
_— 0 —

1[7p) =g - R

117p] .}7p} = @2 +R% - 29 . R

Then using (3.1) for the A's (3.93) - (3.96) become (taking

8, =8 = a6 = 0) ¢

«50-

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

ws_

.

R = '&3 &35




oy |

— 3

Figure 3.9.

Figure 3.10.

A general P-2R-P-R-P

Wy

manipulator,

A 6R’81’282'336868585 manipulator.

3 and 4 intersect.
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r—83(c9lsﬁ)zs‘;az-’-selcezco,lsc12+selsalcaz)
+a2(c0:c92-391592ca1) + szselsa,1 + fa\lce1
s3(591892sa2-c91c920318a2 - celsalcrxz)
+a2(391c92+c91892q11) - 82691&11 + 81891

s3(-c92salsa2+oaloa2) + azsezsal + spcay

[ —

a4(-c95c96+895596co,5) - 85(:96 “ 8589680‘5

84(c95596+895c96co,5) + 85896 - ssceésa5

+s4(sesse6sa4-c95c96sn,4ca5 - c,chys0.)

-a4s953n,5 + 54(c955a4s1.5-ca4ca5) - 85Clg

celsezsaz + selcezcalsaz + selsalcqz
Wy = 80,s8,807 - cOlcezcalso.z - ¢8,s0,ca,

0

—

595‘:96304 + 69589630,400,5 + 8963148’15
7@4] = .sessseésu4 + c95c96sa4ca5 + cBgco,saq
'C958a4505 + 00.4(115

| 0 ]
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(3.99)

(3.100)

(3.101)

(3.102)

B}
am————-1

g 0= /= o




In addition (3.99) and (3.i00) respectively yield

Q? = 5,2 + ap% + 8, + a2 + 281800, + 2a18380280) + 28985ca,  (3.103)

7p2 - 342 + 352 + 352 + 342 + 2a4asc95 + 284848580y + 2848g5ca,  (3.104)
Our approach to this problem is to solve for the coordinates (x, y, z) of
the point of intersection of axes 3 and 4. With this in mind we

eliminate 02 between (3.99) and (3.103) which yields the polynomial:

2
Ez - (832+822+822+11 +28,81Ca2]2

2&1
Z = 8,C0 -Bcaca.—z
+ 271 3172 .24 832a122 (3.105)
80y

where we have defined Q 1in terms of its components

X
Q= |y (3.106)
z
and
Q2 =~ x% +y? 422 (3.107)

Similarly eliminating 65 between the z-component of (3.99) and

(3.103) leads to

2
[?g? - (a42+852+°52+842+23485°“4)

2&5

7
z+8,,C04C0 c+8 cCOL
47475 S = 342a142 + 842 (3.108) l

8Q
5 |

We note 1[72] -1[72] - ?g . P and using (3.98) for 1[72]2 0
we form

P2 = g2 + R2 - 29 . R (3.109)




also

7x X T
7
y -1 y
. = Aeq (3.110)
4 4
1] 1 _|

where Aeq ! 1is defined as in equation (3.53). Thus using (3.100)

for 'z , (3.109) for P , (3.108) becomes

92+§2-2Q.g-(a42+82h 2

240 240,
5 5 "'34 +25485Ca4

2‘5

-1
s a)3x + a3y t a3z + ay, © + 8400, cagt85c0, o
4

21 2 + 2
o a (3.111)
Sag [ 4

We next want to express w3 and =, in terms of x . y , and z
and use the relation

Wy + W, = Cosas (3.112)

For this we need c9; , 591 5 c92 5 392 5 ces o 395 , c96 , 88 explicitly

6
expressed in terms of x , y , z . We note 392 and 392 ares
simply obtained from the z-components of (3.99), and from (3.103)

and are

2 (e l40 240 2, 2
281 30.1

092 b

(3.113)

d

J

= =

s | o
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—

O =3 el el el W el 4

)|

i

—

——
| - .

1
-4

e —— [y
=] 5 | SEE |

-
“"2[z -(szq11+s3q11a128 v 52&12 Eﬁ “(532+822+822+a12+28253Q1%ﬂ
sa] |

2 2
ar< + 532a12
(.114)

c8; and 591 from (3.99) are, after simplification i

coy = x(s3592a;2+azc02+al) -y £s3(c92q11am2+a11a12) - a2562q11 + szsql]

x2 + y2
(3.115)

y(848828q3%a,c6,ta ;) + x[33(c62calsa2+sa1ca2) ~ agsbjycn; + 5290-1_]

s9; =
x2 + y2
(3.116)
Where we may use (3.113) and (3.114) for c62 and 592 . When (3.113)
(3.114), (3.115) and (3.116) are used in (3.101) tc express w3 1In
terms of x , y , and z , the resuit is a third degree expression in
X oy , and z » If we do similar things witn 95 and 66 for gy
then (3.112) becomes a polyn:mial of degree six in x , y , z . This
along with (3.103) and (3.111) are three equations for x , y , and
z . However, they are of such large dagree that finding all the rocts
is not feasible. Though there are some special cases of interest.
For a 6R, aja, manipulator, with q; =aj =ag = 90° and
Qo= 0y, = -90° the equations reduce to a degree which is workable.
This configuration is shown in Figure 3.1l. Equation (3.105) reduces
to
x2 +y2 + 22 = a2 (3.117)
and (3.111) reduces to

x2 +y2 +2% + %% +y,2 + z42 - 2xx, - 2yy, - 2z4z = a,%  (3.118)

—-—

"55" l




ke

Figure 3.11.

A 6R,a2a
X, (x,y,2

t

manipulator with adjacent axes orthogonal.
is the point of intersection of axes 3 and 4.
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where R 1in (3.111) has been replaced by its components,

and the indicated dot product performed.

(3.99), (3.100), (3.101), (3.102) reduce to

w3 =

7[m4] =

from (3.119) we obtain

—azcelcez B
azselcez
azsez

1

b —

84C65896

-14565

e 12

-501562

cez

0

-505c66
305566
ch

5
0

xa:Y4,24:

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)




using (3.123), (3.124), (3.125) in (3.121)

1
m =
P gk,
|
replacing c922 by 1 - 3922 and using
becomes
1
m -
a2

|

from (3.120) we obtain

C96 -

-xy
-yz

2 52
a, c92

0
392
-X2z
-22.’.‘ 2

(3.126)

from (3.125), (3.126)

(3.127)

(3.128)

(3.129)

(3.130)

substituting (3.128), (3.129), and (3.130) in (3.122) and simplifying

gives us

-58=-

(3.131)

]

toammed  d

—_— = = B =

—

o =3




—_—

L O = &3 &3

—
4

[

We now rotate 7[m4] to express it in terms of system 1 by

w, = Aeq7[u%] (3.132)
with Aeq as in (3.53) and 7[m4] as in (3.131) we get
-3117x7z - 3127y7z - 3137z2 + 313342
7 7
w, = 1 -3217x7z - a227y z - ag3 22 + 323342 (3.133)
a,“|1 - 'z .
7 7 7
; sl | [asn’%'z - ag7v'z < a3e? +agge,?
0

To eliminate ’x , 'y , 'x from (3.133) we use (3.110) with Aeq from

(3.53) which after simplification yield:

-(513x+323y+a33z+a34'l)(x-x4) + 813842
-1\ fue 2
-(a, xtaggytazyztag, ") (voyy) +az3a,° | (3 134

w{; =
ay2[1 - 152 * =(a)yx+agyytazyztaz,=l) (z-z;) + 2
"4 aj3xTaz3yTazzzraz, 4) T 8338,

0

h— —

Then using (3.127) for w3 and (3.134) for Uy, the equation
w3 - w4 =0 results in the polynomial:
z(al3x+az3y4a33z*a34'l)(x2+y2+zz-xx4-yy4-zz4-322-342)

2a -
33

(3.135)

- -1 2
+ zaqg, 1342 + z4322(313x+az3y+a33z+n34 ) + a, a, 0

We note that linear combinations of the equations (3.117), (3.118) and
(3.135) can be formed to reduce the degree of the equations.

Equation (3.117) we leave as is. Combining (3.117) with (3.118)

leads to

2, 2
2x,x + 2y,y + 242 + 342 - a22 - (x42+y4 2,) =0 (3.13)
and using (3.136) and (3.117) in (3.135) ylelds
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The
X,
one
and
has

was

2
0= XZ[813(.?-%— - X4 + y4 + 24 - 84 )]
2 2
2 2 2 2 2
a + +
+yalay, 0 2 o S EREL B Y. A
2 2
ro. 2 L uityPral? | ad
+ 2z L833(' 2 2 - 2 )]

+ x (al3z4822)

+y (az3z4822)
2
-1, 2. - 52
2 [(a33248,7) *+ oy, 8" tay, )

2 -1 2 2
+z,ay a3, taza ay

(3.137)

i xaz + y42 + z42 _ 4

2

2 2

equations (3.117), (3.136) and (3.137) are three equations for

y ,and z .

variable easily.

(3.137) leading to a polynomial of degree four.

been carried out and programmed on the PDP-6.

The linear equation (3.117) can be used to eliminate

Another variable can be eliminated between (3.136)

This procedure

An analysis program

used to generate inputs with known angles to check the results.

A typical example was generated by the arbitrary input angles

0; = 34°, 6, =21°, 8

= 780 , 6

3 4

link parameters az = a, ™ 15" , which gave:

F—:0.322 -0.481 0.816
0.555 0.641 0.577
Aeq =
-00801 00598 00037
0 0 0
=60~

=-56° , 85 = 23°, 85 = 1° and

12.066
18.035
=5 609

1

)
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For the above, the four sets of common roots were real and lead to
four sets of angles for each root. They are shown in Table 3.1.
If 81#0 then the solution may first be expressed as three
quadratic equations in three unknowns (x , y , and z) and finally
as an eighth degree polynomial. With 81#0 , 32#0 , 34#0 » and 's
as before, and with x , y , z defined as before, (3.105) becomes
(2 +y2 +22 - a1’ - 82)2 +4ay? (22 - a,?) = 0 (3.138)
and equation (3.111) reduces to (3.118) as previously noted. 7To
form g3 we use c6; and 391 from (3.115) and (3.116). Next
we use c92 and 392 from (3.113) and (3.114) and substituting

these quantities into (3.101), we obtain after simrlification:

[(o 2xz
1

m3 = . ) i 2 2 - Zyz
22, Lt TR0 e, (x24y2422-2,2) + 22,7 - a)?

== 0
(3.139)

w, 1s as beiore and given in (3.134). By using (3.139) and (3.138)
in (3.112); by replacing (x2+y2+32) with its equivalent from (3.118),

and by simplifying, (3.112) becomes:

0= x2 (2313:4x4)
+ y2(2a332, 4)
+ 22[833(-5 2-8424.812_822) + 2333242]
+ xy[2ay32,y, + 225324, ]

2
+ yz[2a23242 + 323(-32'342'*31 '822) + 233324)'4]
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2. 2 2
+ zx[2a4,2,%, + 2313242 + 813(‘32‘84 ta) -a; )]

2 -
+ x[ay3z4(- R2+a42-a12+a ) + 2a33a42x4 + 2a,, 1zaxaj

2 S
+ ﬂ%fﬁ ﬂaafﬁ2)+u”%%a+u% z,,]
o, 2-g 2 -1 -R2
+ .12 - 2,9)

-+

-1 2 2.2 2 - 2_ 2 2
[a34 z4(-§ +aa a) ta, ) +a a, ( +aa a; +32 )] .

33
(3.140)
When (3.118) is used for x2 + y2 + 22 in (3.138), that equation becomes
quadratic. This together with (3.118), and (3.140) are the three
quadratics for x , y , and z . Eliminating two variables produces
a single polynomial of degree eight. The preceding was programmed on
the PDP-6 to yield a final polynomial in 2z . For the link parameters
31'13 > 32=15 » 34-15 » saveral examples were run. Examples were found
in which eight sets of values did indeed satisfy the three quadratics.

One of these, generated in the input angles 01-90 , 02-175° , 03-188°,

6,=17309, 05=174°, 06-1690, led to the following set of elbow positions:

x y z
1| =25.342 11.820 1.048
2| ~-24.457 ~13.5% 1.200
3 -1.914 =0.569 0.294
4 -1.919 -0.304 1.307
5 -1.960 0.399 -0,019
6 -1.979 -0.168 -0.641
7| -12.297 0.735 14.985
8| ~-18.119 1.073 -14.088

Now, in order to extend the above problem to include ag#0 , we

must define a new variable

We=x2+ y2 +z

2
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We then replace the terms (x24+y%+z2) with W in (3.105) (3.111),
and (3.112) and appropriavely rewrite w, Equations (3.105), (3.111),
(3.112), and (3.141) become quadratic in w , x , y , and z . The
details of this may be found in Appendix V. According to Bezout's
theorem this system has at most 16 sets of common roots. However, no
method 1s known by which three of the variables may be ecliminated to
attain one polynomnial of only degree 16.

To summarize the above we have found that:

l. A 6R, aja, may have as many as four different

4
configurations leading to the same hand position
and orientation.

2. A 6R, ajaga;, may have as many as eight different
elbow positions (the elbow is considered to be the
point of intersection of axes 3 and 4) leading to
the same hand position and orientation.

3. A 6R, aja,a,8, will have at most 16 different

positions that the elbow can assume for each fixed

hand position and orientation.
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CHAPTER 1V

NUMERICAL SOLUTIONS

Our solutions so far have been made possible by the existence of
special geometry. To analyze more general cases, iterative procedures
must be used.. Two procedures are presented to handle these cases.

The first employs the well-known Newton-Raphson technique* and the

second applies velocity methods.

4,1 Newton-Raphson

The Newton=Raphson method assumes the existence of an appro imate
Solution, Then the equations are linearized and an increment to this
approximation is computed hopefully leading to a more accurate approxi-~

mation. We write

91-9‘104-691 {m1,...,6 4.1)

where pg;, 1is the first approximation, and 8A; s the increment, and

Hi is the more accurate approximation. We may then write (3.4) as

~ . -
8 8 - 68 A 66 , b |
c(fy +5 1) a(eio+ 1)cai s( io+ i)au1 aic(eio+ 91)
= - \
A 8( 8ot éﬂi) cl 8+ Gﬂi)cai cl ot 8‘1)sai ais(91°+ 691)
0 .ai Cai 'i
0 0 0 1 |
- 42)

*This method was applied to seven link mechanisms with revolute pairs
by Uicker, Denavit, and 'iartenberg 49]. The approach presented here
is similar to theirs. They assumed the motion of one link to be
prescribed as an input and found the displacement of the rest of the
mechanism as they incremented the input.
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Then expanding c(9io + 691) and 5(9i + 691) , using trigonometric
o

identities for the sum of two angles and letting c(691)=1, 5(691)= 691

(4.2) becomes

[c0, -56 cti 88 su a c® -g8 .8 a -
io " jo 1 1o i i 1io %00 T¢%10%% ©8o%% 8,88,
8 c§ co -c§ 8sq a sb 48 8 6 ca o e
Ay =["010 “P1o®% TP fi%Crofe Pr|of, 00 %% 095 #1%%
0 0 0 0 0
sai cai s1
0 0 0 1 B 0 0 0 1 _
[ o (4.3)
which we write as
A, =A + 8% B 4.4
i io i 1o Ge
where Aio and Bi are defined from (4.3). Using (4.4) in the basic
o

eqn. (3.4) and retaining only terms of degree one or less in 691 we

have

58, (B10h 08 30R40t 500600

+ 88 (A10BagA30R40R50A60)

+ 885 (A 10A20B30840A50A60) T

+ 88, (AycA20A30B40Ms0A60) |

+ 8% (A1gAg0A30h4085¢ 60)

+ 865 (A1oAa0R30840R50P60) "Ae4"A A z0A30A40A50R60
The matrix equation (4.5) contains six independent linear equations
that may be used to compute aei,(i-l,...,b\ . It is noted that the
preceding was developed for revolute jJoints, but the method is alsr
applicable to manipulators with prismatic joints provided enrropriate
changes are made in the Bio c

This method lends itself to computation on a digital computer. A

program has been written implementing this scheme. The inputs to the
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program are the joint angles of the manipulator in its initial state,
and the desired final hand position and orientation., The output is a
set of angles leading to the final state, If the final state is a great
deal different from the initial state, then solutions of (4.5) will not
yield "small" corrections and the method will not converge. In order
that (4.5) be valid it is necesssry to generate intermediate

targets. The right-hand side of (4.5) represents a translation and a
rotation. intermediate goals are specified by taking a fraction of
the total rotation and translation. Th: program begins with the iritial

angles as the first approximation. Then {t computes the next approxi-

mation based on an intermediate goal. A new intermediate goal is computed

and the process continpes until a satisfactory set of angles is found or
the method fails to converge after a fixed number of iterations. See

Appendix I for details.

4.2 Iterative Velocity Method

The iterative velocity method is based on the fact that a change in
position and orientation of a rigid body (in this case the hand) can be
expressed as a screw - a rotation about and a translation along a single
fixed axis. 1In addition, for small motion, it can be shown that the
screw is related to the angular velocity.

We write W and V as approximations respectively to the angula:

velocity of the hand and the linear velocity of a point in the hand at

*On the right-hand side of (4.5), Aeq represents the desired position and
the product of the six matrices represents the present position. MHence,
the difference gives the displacement which may be represented as a
rotation and a translation.
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the origin:

W=b% n (4.6)
At
V=h &n-nxrdp , (4.7)

ot At
where quantities on the left-hand side of the above are found from the
Sscrew; AY is the amount of rotation, n 18 a unit vector parallel

to the screw axis, ™ 1is the pitch of the screw, and r 1is a vector

from the origin to the screw axis., The details are showr in Appendix II.

In addition we may express the angular and linear velocity as functions

of the rotations in the arm joints. That is

0

‘_J - :, El (4'8)
i=1
6

Y2 W oxr (4.9)
i=1

where Ei is the angular velocity of the hand due to the rotation about
axis 1 and 51 is a vector from the origin of system 1 to axis 1.

We make the approximation

A8
Ei’ZFL n, (i=l,...,6) (4.10)

where n; 1is a unit vector parallel to axis 1 and we assume that the
motion of the hand from initial to final position is small, so that
‘4,8) and (/4 9 may be written using (4.10) as

6 Ae,
W= /, =—" n (4.11)
- ra

6. ap
V= -> = n, xr (4.12)
- jgl At = -1
-H8-
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Then equating the right hand sides of (4.,11) and (4.12) to the right-
hand sides of (4.6) and (4.7), and we obtain two vector equations repre-
senting six scalar linear equations in Aqi , i=1,...,6. Equating and

dividing by At yields:

6
> 8 = A® 4,13
{f% ) { n,) A%n ( )
6
> (08 n xr)=HA n-nxr (4.14)

The right-hand sides of (4.1) and (4.14) are computed from the known
changes in position and orientatioan of the hand. Since the initial
configuration of the manipulator is known, we have values for the
21 and 51 . As long as the changes in position and orientation,
as represented by the screw, are small, then the solution of this set
of equations gives small changes ir. the joint angles. Thus the
and the n, do not change very much and we are justified in using
their values in the initial state. To apply this method we must insure
that the right-hand sides 6f these equations are small. Therefore,
for large motions, we take only a portion of the screw to compute
the incremental change in the angles. We also limit the change that
is made at each iteration.

1f any of the revolutes are replaced by prismatic joints, this
method may still be applied with apprcpriate changes in (4.11) and
(4.12),

A computer program has been written utilizing the above scheme,

details of which can be found in Appendix II.
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4,3 Comparison of the Methods

It was desirable to test and compare these methods to determine
their practicability in finding solutions for complex manipulators. 1In
addition it was hoped that the velocity method would be faster as it does
not require the matrix multiplication that the more conventional
Newton-Raphson method does. A 6R,sjajsqa;, manipulator was used as a
trial for the two methods. For the purpose of testing, the target hand
positions were generated by sets of known angles, Programs were written
in FORTRAN 1V for the PDP-6., With this machine, an iteration using
Newton-Raphson took 0.140 seconds while the velocity method took 0.097
seconds., A typical example is:

With the parameters of the arm fixed at

O, = 0 = & = g0°
5 90

3

(]
0.2 = 0.4 = =90

a, = 0,375

s, = 12,2

ay = 0.375

8 =9.5
and arbitrarily

a = 5.9

6

O =0
6

the target was generated by the angles

8 = 100°, 8 = 100°, 93 - %° 8, =3° 6 =50 ¢ =0,

5 6

This leads to the hand position specified by position vector
27.915
B, = -0.869
0.314
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and the orientation (specified by two unit vectors fixed in the hand,
L, pointing in the direction of the hand and §2 in the direction of
the sixth revolute axis);
-0.869 0.314
L2 «| 0,492 ’ N, 0.486 c
=0.042 -0.816

The initial configuration of the arm was

8, = 70°, 92 80°, f, 40°, A 0, 60 , 30

S 6

with
14,229 =0,979 =0.105
P; =120.295 Ll =1 0,196 ﬁl =| =0,220
14.141] , 0.061 =0.970

The velocity method resulted in:

| = 100.00, & = 100.00, = 30.00, 8, = 30.00, 8 = 50.00, B = 0.00
27.914 -0.870 0.313
P =|21.001] , L =| 0.492 N =| 0.486
24.863 2 |.0.042 =2 1.0.816

Number of iterations = 10
Run time = 0,97 seconds
The Newton-Raphson method resulted in:

91 100.00 o = 100.00 3 30.02 i 30.00 5 49.98 6 0.01

27.914 -0.870 0.314
P =|21.002 L =| 0.492 N =| 0.486
24.862 =2 |.0.042 =2 1.0.816

Number of iterations = 13
Run time = 1,82 seconds
From the results of many tests similar to ths above the following

was observed:
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1. For small motions (rotations of about 10p in each joint) both
methods converged to solutions but the velocity method generally
had fewer iterations.

2. For larger motions (rotations of 10° - 90° in each joint),
Newton-Raphson did not always converge within the upper limit
of 400 iterations. The velocity method did in all cases tested.

3. For even larger motions, the velocity method did not always
converge within 400 iterations but did converge in all examples
when allowed more than 400 iterations. ‘lowever, such was not
the case with Newton-Raphson, In some examples even after
4000 {terations, it still did not converge,.

Both methods become very time consuming whenever the course of the
solution takes the arm to the equivalent of a '"stretched out" position.
That is whenever the hand is in a position from which it cannot move

in an arbitrary direction and rotate about an arbitrary axis, the

system of equations formed in both the above methods degenerates.
Generally, thesemethods work their way out of such predicaments by
taking very small steps, and by benefiting from round-off error inherent
in the computations., The further the distance between initial and

final ststes, the more degeneracies that are likely to be encountered
enxcute to the final state.

Even though convergence is occasionally slow, the velocity method
reached a solution in all cases tested, thereby proving it to be useful
for complex manipulators. 1In particular for a short range of motion it
was very efficient, Thus it might be used most effectively to find

the finsl set of angles, when a first approximation has been obtained

using a rather simplified model of the manipulator.

~72-




CAPTER V

A DIGITAL MANIPULATOR

5.1 Description of the Manipulator

One type of manipulator whose solution does not fall into the
class previously discussed is one containing more than six degrees-of-
freedom but having a limited motion in each joint. An articulated
arm of this type having many degrees-of-freedom was described by Anderson
and Yorn [37]. They found that such a design was practical for use in
an underwater laboratory. 1In fact, they claim that this design opti-
mized mary desirable criteria such as slenderness, cost, microdexterity
and range of operation,

If, in addition to restricting the range of freedom at each joint,
we allow orly a finite number of states to exist at each joint, then the
arm becomes digital in nature. This makes it easy to be interfaced with
a digital computer. The concept of such an arm was suggested by
L. Leifer who together with V., Scheinman developed working models for
the Stanford Artificial Intelligence Project (see Figure 5.1). Since
the arm is srake-link in form, they rnamed it the "ORM" (the Norwegian
word for snake).

We shall examine the problem of finding a solution for a digital
arm, 1t can be seen that knowledge of the state of each joint together
with knowledge of the link geometry is sufficient to specify the position
of the hand. The orientation freedom of this device is limited. In

practice it would need to have a wrist capable of putting the hand in
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Figure 5.1.

Working model of the ORM developed at Stanford.
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the prcper orientation. We, therefore, examine the problem: given the

desired position of a point in the hand, to find the state of each joint

leading to this position.

he problem is divided in two parts. The first is to consider
a two-dime:sional arm and develop a technique to solve it. The second
is to develop a method for three dimensions with insight gained from

looking at the two-dimensional problem.

5.2 Two-Dimensional Model

The two-dimensional or planar arm to be considered is binary in
nature, In other words, there are only two states for each joint. 1If
the arm is made up of n 1lin«ks, there are 2" possible configurations.
A model of this arm is shown in Figure 5.2, where the angle between two

adjacent links can be either +8, or -8, where 90 is a constant,

o
y R
¥y
HAND
Figure 5.2. Binary Arm.
If we number the joints 1,....n, and denote the rotation in the 152

joint by @
that the end of the final link is %“close'" tb the desired target.

g{» 1i=1,....n, our problem is to find the 91 such

Since there are exactly o0 possible configurations, there are

at most 2" points that the end of the arm (the haud) can
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reach. Thus, in general, the hand cannot be placed at an arbitrary point.

Hopefully, however, with sufficient links the hand could be placed close
to any arbitrary point within its workspace.

There exists a well-defined transformation (see Appendix III)
to find the position of the hand, given the 91 . However, the inverse
problem (i.e., given the hand position, find the associated 91) has
yet to be solved. Theoratically, we could exhaustively examine the
2" possibilities construct a table and then choose the one that places
the hand closest to the target, but in practice this would be too time
consuming. We therefore need a systematic method to help in dealing with
such a large solutién space., If we define the error as the Euclidian
distance of the hand from the target, the scheme outlined in Figure 5.3

suggests itself,
START WIiTH ARM 1N

i SOME ARBITRARY
T CONFIGURATION
P .
NO ‘
Ie| CHOOSE O6; TO
MINNMIZE ERROR
YES
'S
I‘I;I P ERROR TOO
YES LARGE

FINISH

Figure 5.3, Saquential Search Procedure,
In this method the arm is put initially into some arbitrary con-

figuration and the position of the hand computed., Starting at the
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vrigin each joint is examined sequentially to see if the other state
at that joint would reduce the error. If it does reduce the error,
the change is made. That is, the rotation at that joint is considered
to be reversed and the position of the hand computed while the rest
of the arm remains rigid. The state of that joint is then changed
1f necessary to reduce the error. However, the existence of local
minima prevent convergence of this method in many cases. It is
possible to get improvement by using look-ahead. Instead of considering
changing each joint singly, the results of changing that joint along
with changes in the next k joints are considered. This may be
called k-stage look-ahead, and would involve computing the hand position
o155 times for each joint. There are now many strategies possible using
combinations of 0,1,2.... - stage look-ahead. There is, of course,
a trade-off between the amount of look-ahead and computation time,

For instance, one strategy was to use no look-ahead until the error
could not be reduced, then try l-stage until no improvement resulted
then 2-stage etc. The process was halted if the error was sufficiently
small or the look-ahead became too large (usually 3-stage was as much
as was allowed).

For purposes of trying these strategies, an arm with twenty-four
1 inch links, with possible rotations of t15° in each joint was
modeled in the computer., Tests were started with the arm extended
along the x-axis as shown in Figure 5.4. The results are presented in

Table 5.1. Computation times are shown in Table 5.2,
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Figure 5.4, The arbitrarily chosen initial starting
configuration for the arm.

It can Ye seen that no strategy tried was best in all cases. These
methods had the additional disadvantage that the shape of the arm itself
was not predictable. It was hoped that improvement would result if thc
searching was started after the hand was put at a point near the target
by some simple procedure.
In order to place the hand near the target, a curve connecting
the origin and the target was generated, whose arc length was equal to
the length of the arm, and whose curvature did not exceed that which
the arm could assume. Curves made up of segments of four circles having
the above properties were used (details of the derivation of these
circles are presented in Appendix III), and a rought attempt was made
to match the arm to this curve. After the rough curve match, the
previously described searching technique with l-stage look-ahead was
used., Various curve matching algorithms and different radius circles
vere used. Some of the results are shown in Figures 5.5 through 5.9.
Figure 5.5 shows the configuratior resulting after four loops with
no look-ahead, then two loops of l~stage look-ahead. The procedure was
startad with the arm aligned along the x-axis as in Figure 5.4,

Figure 5.6 is the result of first matching the arm to a curve composed
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of segments of four circles, and then using two loops of l-stage look-

ahead,

1+

Since the arm can tilt 15° at each joint and the joints are a
fixed distance apart the arm bends in a circle if all the tilts are in
the same direction, The radius of this circle is the minimum that the
arm can assume, In Figure 5.6, the radii cf the circles used to generate
the circle segment curve have this minimum radius. To match the arm
to the curve, the state of joint i was chosen so that joint i+l
on the arm was as close as possible to point {+1 on the circle-segment
curve. As can be seen, this procedure definitely influenced the shape |
of the final result. It may be noted from Figure 5.6, that in the
attempt to match the arm to the circle-segment curve the arm lagged the
Ccurve. One attempt to remedy this, was touse larger radii circles to
generate the curve, It can be seen from Figure 5,7 that this improved
the match,

To reduce the lag even further, the state at joint i was chosen
80 that joint 1+l was as close as possible to point 1i+2 on the curve,
This appeared successful as can be seen in Figure 5.8. An attempt to
match the arm to the curve in both slope and position was made.
Figure 5.9 shows the results of this scheme. The arm womewhat took
on the shape of the curve, but not as much as in the other schemes.

The results presented were for the target (10,10). Yowever, they

P

are similar to those obtained for other targets., The best results

were obtained when the radii of the circle segments were larger than

the minimum, For radii of too great a magnitude, no curve existed that
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Figure 5.5. Result of arm after 4 loops of 0 look-ahead and two loops

of l-stage look-ahead. The starting configuration was
along the x-axis, as in Fig. 5.4.
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Figure 5.6. Result of trying to match arm to curve made up of segments

of four circles, and the improvement after two loops of
1-stage look-ahead. Radii of circles is equal to minimum
radius that the arm can assume. The curve matching tech-
nique was to choose ©; 8o that point i+l on the arm was
as close as possible to point i+l on the curve.
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of four circles, and improvement after two loops of l-stage
iook-ahead. Radii of circles is 1.2 times minimum that
arm can assume. The curve matching technique used was to
sequentially choose 6, so that point i+l on the arm was as
close as possible to point i+2 on the curve.
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Result of trying to match arm to curve made up of segments

of four circles, and improvement after two loops of l-stage
look-ahead. Radii of circles is equal to minimum radius

arm can assume. The matching technique was to sequentially

choose B so that (x,-%,,J+ Yy, - Ting) 5 [[mr=te) - (?z-‘l_;%h)] was .
a minimum, where (x.,y;) is the coordinate of joint i on

the arm and (X_.y,) is the coordinate of point i on the
curve. This matching criteria puts a weight on the slope as i
well as the position of the links. L
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could connect the origin and the target point. A value of 1.2 times
the minimum seems to be about optimum. It was found that this allows
for a measure of control over the final shape of the arm as well as

generally reducing the position error,

5.3 Three-Dimensional Model

This arm is similar to its 2-dimensional counterpart. The differ-
ence is that two axes of rotation exist at each joint., The axes inter-
sect and are 90° apart. (See Figure 5.10.) We assume our model to be

constructed so that eight states are allowed at each

AXIS 3
AXIS 2

Figure 5.10, Typical joint in 3-dimensional digital arm.

joint. These are: either a rotation of teo about axis 1 with none
about axis 2, or a rotation of % about axis 2 with none about

o
axis 1, or rotations about each such that the net result is a rotation

t¢ about axez midway between axes 1 and 2. Thus, two links can be
o

tilted with respect to one another 190 about 4 different axes that are

45° apart. If we denote the rotation about axis 1 as ® and the rota-

tion about axis 2 as ® , then the possible states are:
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State 8 P
1 +8 0
o
2 -8 0
o
3 0 +0
o
4 0 =8
5 +tan-1(j-3tan9°) ain'l(j.'z-sineo)
6 +tan-1(l -1, 1
Jétaneo) -8in (]Esinao)
7 't““-l(fz'ta“"o) '810-1(j;sin9°)
8 -tan-l(j_;taneo) +sin'1(\%2-sin9°)

where the values of 6 and 9 in states 5-8 are the actual rotations
about axes 1 and 2, leading to equivalent tilts about axes at 45°
to 1 and 2 (see Appendix III). An n-link arm would then have g"
possible configurations. Again there is a well-defined transformation
to find the position of the hand given the angles (See Appendix III)
but no such transformation exists to find the angles given the hand
position,

The procedure presented in Figure 5.3 is still applicable except
8 states exist at each joint. Then each joint woulAd be examined
Sequentially and the state at that joint is chosen which minimizes
the Euclidian distance of the hand from the target. With k-stage
look-ahead variations in the jotnt under consideration plus all
possible combinations of the next k are considered. Then only the
joint under consideration is moved. The position c¢f the hand must thus

be computed 8k+l times for each joint and the time involved in these

computations will limit the amount of possible look-ahead.
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An arm with 24 l-irnch links and possible tilt of 115° between each
link, was modeled in the computer. The arm was placed initially in
the configuration of Figure 5.3 and strategies involving combinations
of no look-ahead and l-stage look-ahead were tried. Results are presented
in Table 5.3. Computation time for one loop of sequential search is
shown in Table 5.4. Details of the algorithms used are in Appendix III.
In general, the results are encouraging. It seems that this
approach works better in three-dimension than in two as the errors
are lower, The reason fcr the improved behavior can be attributed to
the additional possible states at each joint. Computation time is
longer in three dimensions, limiting look-ahead to one stage if real

time problems are to be undertaken by the arm,

5.4 Discussion

Many variations of the aforementioned strategies are possible.
For example, one may start sequential searching and making moves at
the hand then work toward the origin. It is also possible to find
the joint at which a change would reduce the error by the largest
amount, make this change, and then continue the process of changing
the joint that mukes maximum reduction in error.

A reason for starting at the origin and working toward the hand
is that in general a fixed rotation near the origin will cause the
greatest deflection of vhe hand. Thus, in many cases making a change
near the origin turns out to be the change that makes the maximum
reduction in error,

Another approach is to take two joints at random and consider

the result of simultaneous changes in each. The two-dimensional
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curve matching scheme could be extended to threc-dimensions to give the
arm a better starting configuration. It might be possible to break the
spatial problems down into planar problems. Another idea is to divide
space up into several regions, store a configuration that places the
hand in each and then initially start the hand in the region closest

to the target.

Many strategies are possible, none clearly better than others.
Perhaps further study would show that certain ones work better in certain
areas of space. It then might be possible for the computer to learn
which was best for a particular region.

Different error criteria might be better. Cartesian coordinates,
with the base of the arm aligned along the x-axis were used. This might
Tean that error in the x-direction should be weighted differently than
error in the y- or g-direction. Perhaps the arm can better reduce angu-
lar error than radial error and this should be taken into account. Again
learning might be applicable in selecting one error criteria for a given
region or for optimizing weights placed on different quantities in an
error function which is to be minimized.

In order that this arm be useful, the points in the reachable space
mugt be close together. With a 24 link arm, there are 824 (approximately
1021) possible configurations., There will be fewer reachable points than
configurations, but reducing 824 by a factor of 10 or 100 or 1000
still leaves a large number of points. Near the boundary of reachable
space, the points will be further apart, but in the interior, the
density whould be very high. Assuming that a 24 link arm has a working

volume of 5x10“ cubic inches and 1018 reachable points exist, thun
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the average density is 2x1013 roints per cubic inch, or if the points
were equally spaced, they could be 0.00004 inches apart. This leads
one to believe reachable points should be close enough to any arbitrary
point in the space. The problem, of course, is to find the configura-
tion that leads to a position near a desired point.

The results indicate that it is possible to find a solution for
this digital manipulator. The solutions obtained are far from optimal
but close enough to be useful. The dimensionality of the problem is
staggering at times, but it is in fact the large number of solutions
that give hope for any sub-optimal technique.

Further improvement is possible. By streamlining the subroutines
used for basic computations, computer time could be reduced. The
incorporation of different strategies for different zones would be
useful.

Although the problem of finding a set of angles to place the hand
at a given target appears soluble, the arm itself has serious limitations.
The primary drawback is the inability to control its motion. Since
there are discrete states at each joint, a wild motion is likely as
each change is made. That is, the position is undefined when motion
occurg. In addition, positions close in spac- may be very different in
arm configuration. In conclusion, the arm is interesting but in its

Present state has no immediate usefulness.
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CHAPTER VI
TRAJECTORY GENERATION

6.1 Problem Statement -

In remote manipulation a typical problem is to move from an initial
configuration to some new position and then to grasp an object. In
order to carry out this task, the position problem must be solved. This
results in a set of values specifying how much to rotate each joint in
order to move the manipulator from its current or initial configuration
«2 the desired final state. However, in such a case no explicit infor-
mation exists describing the intermediate states between the initial and
final position. It should be noted that the initial and the final
configurations may be physically far apart, and the s, ace through which
the manipulator must move to attain the final state will in general
contain obstacles. It is therefoure necessary to find a '"path' along
which the manipulator can move and not collide with any of the obstacles.
This problem will be referred to as trajectory generation. We attempt
to solve this by defining sets of intermediate values for the joint
angles which lead the manipula*or to the final state in a manner which
avoids collisions.

A person performing manipulative tasks avoids obstacles very simply.
His eyes observe a possible conflict and he knows intuitively to raise
his ¢ -bow or change his direction slightly. He sees 'the world" in
which he is working. He knows immediately which objects he is likely to

encounter and which he will not come near. For a computer controlled
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manipulator the problem is not so simple. The problems of 'world"
modeling, conflict detection, and collision avoidance must all be fac:d
in order to generate a trajectory between initial and final manipulator
configurations.

As a first step in dealing with this very difficult problem, a set
of routines have been developed that provide a mathematical description
of the world. Other routines simulate proposed trajectories through
the space and sequentially examine points along the trajectory for
obstacle conflict. If conflict is detected these routines suitably
modify the trajectory. Several basic strategies to get from the initial
to the final position are programmed so that if one fails, another can
be explored. A block diagram of this s;scem is shown in Figure 6.1.

In the development of these routines, an attempt has been made to
be as gencral as possible in order that the programs be applicable to
any manipulator, performing a wide variety of tasks. In the next

sections, we present a description of these routines.

6.2 World Model, Obstacle Description, and Conflict Detection

For this system a simple model of the "world" is used. The basic
elements of the world are assumed to be: planes, spheres and cylinders.
It is assumed that all objects of interest can be modeled with these
elements.

The boundaries of the workspace, usually formed by table tops or
walls, are modeled as infinite planes. These planes are represented by
a unit vector, b, and by scalar t. Vector b is normal to the plane and
points inward toward the workspace. Scalar t, the distance of the plane
from the origin, is measured in the b - direction.
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Simple, somewhat regular objects which are not planar or cylindrical
in shape are modeled as the smallest sphere that circumscribes the
object. A typical object modeled in this manner might be a cube, a
pencil sharpener or a coffee cup. The assumption is made that all such
objects are supported by an infinite plane. Thus we represent a sphere
by a, a vector describing the location of its center, b, a unit vector
from the direction of support, and t, the radius of the sphere.

Cylinders arc used to model objects containing a predominant axis
such as a tower. 1In addition, cydinders are building blocks for more
complex objects. For example, a manipulator is modeled as a group of
cylinders each of which corresponds to one of the manipulator's
structural members. The assumption is made that all cylinders are
supported from an infinite plane or from another cylinder. We then
represent a cylinder by a line segment corresponding to its axis and by
the maximum distance of points in the object from this line, d. We have
tien:

b: a unit vector parallel to the axis pointing away
from the direction of support
a: a vector describing the position of the base of
the axis
t: the length of the axis
d: the radius of the cylinder
With this representation it is convenient to consider the cylinders to
have a hemisphere capped on each end thereby assuring that all points on
the surface have the same minimum distance, d from the line segment

representing the axis.
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Each obstacle, then, has a list of properties which include its
type (plane, sphere, or cylinder), the composite object to which it
belongs, and the aforementioned parameters which are required for {its
quantitative representation. The interpretation of a, b, t and d is
varied according to the type of the object. Such models of all objects
considered to be obstacles to the manipulator are stored in the computer.

The process of conflict detection consists of determining if the
manipulator and the objects in its workspace will be brought to the same
place at the same time. This is accomplished by computing the distance
between the elements of the manipulator and the elements of the work-
space at various positions along the proposed trajectory. A conflict
is then predicted if this distance becomes too small.

It is undesirable to compute the distance between the manipulator
and all of the objects in tiie workspace. To consider all the objects at
each position along the trajectory would be time consuming. 1In addition,
much of this computation would be wasted as for an arbitrary position,
the manipulator would be so far from a large number of objects that a
collision with these would be very unlikely. We would thus like to
consider only objects near the manipulator. For this reason we divide
the reachable space of the manipulator into small regions. 1In all the
work to date, sixty-four subdivisions have been used. The workspace is
considered to be a rectangular parallelapiped with edges parallel to
the axes of a fixed Cartesian coordinate system. The small regions are
defined as the volumes between three sets of equally spaced planes parallel
to each of three mutually orthogonal faces of the workspace. Then a list

of objects completely or partially inside each region is associated with



that region. For conflict detection, only the objects occupying the same
region or regions as the manipulator are considered.

As a result ot dividing the space into regions, we have the problem
of finding in which region(s) various obstacles are located. In addition
we will have to identify the region(s) the manipulator occupies at various
positions along its trajectory. We wish to keep this analysis simple in
order that the time saved in not having to deal with all obstacles in
the workspace is not lost in trying to locate the manipulator in various
regions. Since the faces of our subdivisions are made perpendicular to
the coordinate axes, we can easily eliminate many regions by comparing
the minimum and maximum coordinates (x, y, z) of an obstacle, with the
coordinate boundaries of the regions. To find in which of the remaining
regions an obstacle lies we compute the distance from the center of each
of the regions to the obstacle (a fairly simple process in view of the
simple world model). We thenc ompare this distance with the radius of
a sphere totally enclosing the region to determine if the object is in
the sphere. If the object is in the sphere, we assume it to be in the
region. This procedure may cause an object to be considered inside a
region when in reality it is outside. However, this process is con-
siderably simpler than :rying to find whether an object cuts any part
of the actual region.

Routines were developed which divide space into regions and
appropriately enter or remove objects from lists associated with the {
regions. These routines also store the properties of each obstacle.

The conflict detection routine starts with the first link of the

manipulator and finds which regions this link is in. It then finds the
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distances between all the objects in these regions and the link. A
collision is predicted if the distance between any object and the link
is small enough so that, with the link continuing along its present
course, a conflict would occur. If a collision is predicted, a flag is
set and the routinz specifiés the obstacle and the link closest to the
obstacle. It no collision is detected the procedure is carried out for
the remaining links in the manipulator. A block diagram of this program
is presented in Figure 6.2.

The method for determining distance between a manipulator link and
an ot ject depends upon the type of object. For spherical objects, the
distance between the sphere center and the cylinder-axis of the link is
computed. The actual distance is then found by decreasing this by the
sum of the radii of the sphere and the cylinder (representing the link).
For planes, the distance between the plane and the cylinder-axis of the
link is computed. This distance is decreased by the radius of the
cylinder to form the actual distance. For objects modeled as cylinders,
we find the distance between the object axis and link axis, &nd decrease
this by the combined radii of the cylinders. Details of these calculations

are found in Appendix 1IV.

6.3 Trajectory Generation and Obstacle Avoidance

We have the problem of finding a series of closely spaced inter-
mediate positions connecting initial and final states. These represent
a trajectory that the manipulator can follow while avoiding all obstacles
in the workspace. The approach used is to start by choosing a plausible

trajectory, simulate the motion along the trajectory and then if conflict
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Figure 6.2. Block diagram for conflict detection routine.
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occurs, to modify the trajectory. This modification is made on the basis
of Jocal geometric conditions in the area of conflict. (A program,
called AVOID, accomplishing this will be discussed in more detail later
in this section.)

Often if more than one obstacle is present, a move that appears
good to avoid one obstacle is bad to avoid another. This may lead the
manipulator to oscillate between objects. It is also possible for some
joints to be at their physical limits so that the avoidance routine does
not find a good move. Finally, the avoidance routine itself may come up
with a non-productive move. It is therefore necessary to continually
ascertain whether or not progress is being made toward the goal. 1If no
progress is being made, it is then necessary to decide whether a slight
change in strategy is sufficient or whether a whole new strategy is in
order.

A program based on the above approach called TRLTRJ, has been
written. The inputs to the program are two sets of joint angles, one
set specifying the initial position and the other specifying the final
position. 1In addition the desired increment between intermediate
positions is specified. The output from the program is an array of
angles specifying the intermediate positions.,

Four basic strategies are built into the program. The first, and
least complex, just increments each angle towards the final goal. The
second strategy computes two intermediate positions to move the 'aanipu-
lator up and then over a concentration of obstacles. The third and
fourth strategies both try to fold the manipulator to shorten it and then

move it in front of any obstacles. These last two differ in that one
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shortens the manipulator by moving joints in one direction toward the
physical stops while the other folds the manipulator by moving the joints
toward the stops in the other direction (in the program, we call these
directions positive and negative, respectively).
The program starts by trying the first strategy. !f any obstacle
is encountered, this strategy is abandoned for the time being and the
second strategy started. If while pursuing this second basic strategy,
a conflict is predicted, an attempt is made to modify the trajectory
using the program AVOID. If -his strategy fails after using AVOID the program
continues and tries the third and finally, if necessary, the “our strategy
in a similar manner. If the fourth strategy fails, the program returns to
the first strategy and tries it using AVOID. If it does not produce a
trajectory, it is assumed that all obstacle avoidance strategies have
failed and the program halts.
I1f any of the following occur, the program considers that no progress
is being made and hence a strategy has failed:
1. The avoidance routine (AVOID) is not able to generate a
move due to joints being at their physical stops.
2. A collision is predicted with the manipulator at the same
point on the trajectory where a conflict had previously
been predicted with that same obstacle (hence it is
assumed the program is in a loop).
3. A conflict is predicted with a plane for the second
time, while trying to avoid the same obstacle.

(Assumedly we cannot get around the obstacle.)
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4. The manipulator cscillates between two obstacles, and no
net progress toward a goal is being made.
5. More than 200 intermediate sets of angles have been
selected without the manipulator reaching a goal.
6. More than 350 intermediate sets of angles have been
explored.
The following conditions cause a slight change in strategy but do
not cause the strategy to be abandoned.
1. A plane of infinite extent is encountered while trying
to avoid an obstacle. At this point we assume that
the manipulator i: moving in the wrong direction to go
around this obstacle. The strategy is to go back to the
first point we encountered this obstacle and try to go
around it by going in the opposite direction. (This
notion of direction will become more clear with the
description of AVOID.)
2. An oscillation of the manipulator between two obstacles
is detected. The action that the program takes is to
go bhack to the point where the second of the obstacles
was encountered and try to go around it in the opposite
direction. If this happens twice at the same position
oa the trajectory, it is assumed that no progress is
being made and the strategy has failed.
A block diagram of TRLTRJ is presented in Figure 6.3.
The subroutine AVOID is used to generate small perterbations in a
trajectory when conflict is predicted. The program attempts to define

-102-



ySTART

INITIALIZE PARAME TERS

'S

|COMPUTE POSITION OF ARM AT FINAL POSITION |

SET FLAG

—3 X7

e | -—
[ .

1

TARGET ANGLES = FINAL ANGLES
PRESENT ANGLES «— INITIAL ANGLES

. -

TYARGE Ve F|R§AAN‘;1;E‘_R MEDIAT

— PRES ENT ANGLES«e— INITIAL
COMPUTE NUMBER OF INCREMENTS
BETWEEN PRESENT MDTA%@M I
- Y
— OLO TARGET ANGIES o— _?IHEF_
ANGLES
) TARGET¢GOALS FROM AvOLL
NO
" [INCREMENT Anciss TowaRDGoM] [ ca  AVOID ]
&S/ N 2 NF A
kompute POsITION | s !
GO BN: AND REYV
ENTER THIS | NO iy 7
POINT N
TRAD s
& ABANO
! STRATEGY
EXi
T WITH A
WE MAKINGN\NO (33
! PROGRESS
FIND RIGHEST OBSTACLE IN |
1 AREA OF CONFLICT M ‘ SET FLAG
)
"COMPUTE TWO \NTERMEDIATE TAR
ONE NEAR INITIALSTATE , THE OTHER Ex\T
NEAR FINAL STATE. BOTH WITH
LINKS ABOVE ZM IF POSS\BLE. Rtae
COMPUTE TWO INTER -
MEDIATE GOALS, ONE
NEAR INITIAL RoBmon
THE OTHER NEAR
INAL POSI\TION. SOTH

L

G |

=] T

&=
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a "good'" direction arnd a 'bad" direction. It then tries to move the

link for which a collision has been predicted as much as possible in the
good direction while not moving in the bad direction. This is accomplished
by defining small changcs in the joint angles of all the links between the
base and the "colliding" link. Ideally these angle changes are chosen so
that the link will have a large velocity component in the good direction
and zero component in the bad direction. If the link does not have enough
freedom (i.e., there are too few joints preceding the link or the joints
are at their physical stops) to make a move in this manner, an attempt

is made to move in the negative bad-direction. If this too is: not
possible then no move is made and a flag is set indicating that the
strategy has failed.

The underlying idea used in choosing a good direction is that all
obstacles are supported by either an infinite plane or another obstacle.
Then if an obstacle lies between the manipulator and the target, one
could eventually get around the obstacle by moving away from the direction
of support. In addition an attempt is made to move in the general
direction of the target. This target will normally be the final position
but may be an intermediate goal generated in a strategy of TRLTRJ. If
the predictedcconflict has occurred in the process of avoiding a different
obstacle, the target becomes the position generated by AVOID when the
manipulator encountered the first obstacle. The good direction is chosen
taking into account the type of obsta 'e and the relation between link,
obstacle and target as follows:

1f the obstacle is a plane or a sphere, the good direction is

specified by a vcctor from the point of conflict on the link to the same
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point on the link with the manipulator at the target position. (The
assumption here is that the sphere is relatively small and lies on the
plane of support.)

If the obstacle is a cylinder, then the process is a bit more
complicated. Recall that a cylinder may be part of a more complex
obstacle (for example the towers in Figure 6.4). If no other part of
the possibly complex obstacle, of which the cylindrical obstacle is a
member has been recently encountered, then the good direction 1is:

1. The direction of the axis of cylinder, if the

obstacle appears* to be between tlke manipulator and
the target.

2. The vector sum of unit vectors in the axis direction
and the direction the link must move to get to the
target, if the ‘ink is above the cylinder.

3. The direction the link must move to get to the
target, if obstacle is not between the manipulator
and the target.

When the cylindrical obstacle is part of a more complex obstacle
and when an element of this complex obstacle has been previously en-
countered, then the good direction issimilar to the above with the
following exception: the positive axis direction is replaced by the
negative axis direction whenever the point of conflict on the obstacle

is nearer the far end of the obstacle (i.e., away from the point of

*We say ''appears' because a cylindrical object may not itself be between
the manipulator and the goal, but the complex obstacle which it belongs
to, may indeed be between the manipulator and the goal.
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.
D) O
(a) simple tower (b) Y-shaped tower

()

Filgure 6.4, Towers used as obstacles. (a) mcdel is a single cylinder.
(b) and (c) are each modeled with three cylinders.
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support). In this way we are able to follow the contour of a complex
obstacle.
Once a good direction has been established for an obstacle it
remains the same until:
1. The manipulator is clear of the obstacles, or
2. An oscillation has been detected.by TRLTRJ, in
which case wherever the positive axis direction
was to be used, it is to be replaced by the negative

axis direction and vice-versa.

The bad direction is always specified by a vector from the link to r
the obstacle, along the line defining the minimum distance between them.

A block diagram of AVOID is presented in Figure 6.5.

6.4 A Test of the Program

The trajectory generating routines were tested by incorporating
them into the block stacking program developed at the Stanford
Artificial Intelligence Project [25]). The block stacking program
represents current research work in hand-eye systems. An electric
motor driven manipulator of type 6R, $3 a3 85 ag (see Figure 6.6) and
a vidicon T.V., interfaced with the PDP-6 computer form the basic system.
Programs written by Singer and Pingle (25 ] enable the manipulator to pick
up blocks from a table and build block towers. The blocks are originally
placed at random on the table but within view of the vidicon. A block
is then located on the table by appropriate analysis of the T.V. picture.
Next, the manipulator moves to grasp the block and then places it to

build a tower. A new block is found and the process continues. 1
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Figure 6.6. Electric Arm at Stanford Artificial Intelligence Project.
A prothe:r tic arm originally built at Rancho Los Amigos
Hospital, this arm has been modified for use in hand-eye
research.
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The trajectory generating routine is used tc find trajectories when-
ever the arm is moved except in the last stages of actually picking vp
or setting down a block. At these times, the manipulator coatrol is
transferred to a special routine whose function is tc¢ lower or raise the
hand along a specified path with a specified orientation.

Objects cousidered to be obstacles are the table top, the support
structure for the arm, and any block towers that have been built. In
addition, to make life difficult for the program, several other cbstacles
(see Figure 6.4) were added. Sirce the range of visior of the T.V.
camera is small], and its recognition powers to date is limited to cubes,
a sub-program was written so that the external obstacles could be added
to the data structure by commands from the teletype.

After allowing the program to run, with the different obstacles in
varying locations, the trajectory generation program was seen to perform
fairly well (see Figure 6.7;. Where possible, it was generally able to
go over or in front of the cbstacles. However, the procedure cccasionally
faiied when the manipulator wes started in a configuration in which joints
were near their physical stcps. In these cases a successful maneuver
might have been to muve those joints well away from the stops and try
again (a procedure not tuilt into the program). In additicn, if the
cbjects were so placed that the arm could only get cthrough by going
between two objects, failure generally occurred.

Whenever more than one or two strategies were tried, the computation
might run upwards cf 20 seconds. Hcwever, most manipvlative scenes are
fairly static, so that once a trajectory had been fcund through a given

set of obstacles, it cculd be used repeatedly. This process would save
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Figure 6.7. Example of trajectory enabling manipulator to go over
obstacles.
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having to re-analyze the trajectory for every move, thus conserving
computer time. In addition we could move backward on the same trajectory
to get back through the space again.

With this program we have attacked the problem of moving a multi-
link manipulator through a space composed of three-dimensional objects.
Had we been concerned with having just the hand avoid obstacles on a
plane, the problem would have been much less complex, as the hand could
be made to follow an arbitrary curve. Such is not the case, when
considering a conflict with all links of a manipulator. We cannot inde-
pendently specify the position of each link of a six degree-of-freedom
manipulator. There are just not enough freedoms. However, the programs
developed above do enable us to deal with the problem of conflict for a
general multi-link manipulator. These prcgrams perform the basic
function of allowing a manipulator to perform tasks in the presence of

obstacles.
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CHAPTER VII

CRITERIA IN THE DESIGN
OF A MANIPULATOR FOR COMPUTER CONTROL

7.1 Kinematic Criteria

As mentioned earlier, a manipuiator needs to have six degrees-of-
freedom to grasp a rigid body with a specified orientation at a specified
position in space. In addition, the kinematic solution must be easily
programmed and solved. This indicates the desirability of a closed-form
solution rather than iterative techniques. The closed-form solutions
are faster and find all configurations leading to the desired terminal
position and orientation while iterative techniques find only one.*

In fact, the iterative schemes may not find a solution even though
several may exist. The question of the existence of a solution is
importuant, as this existence indicates whether a given position and
orientation is physically attainable. It is desirable to have solutions
exist throughout the workspace or at least know where they do not exist.
Thus a factor in the design of a manipulator is the zones in which the
terminal device can be placed in an arbitrary manner.

The jroblem of zones is closely allied to that of solutions. The
existence of a solution for a given position and orientation automatically
guarantees that that point is within the zone of reachable points. One

method of investigating zones would be to solve the position problem for

*The iterative technique may however be used to good advantage when the
distance between positions is very small. Then the iterations converge
quickly, and there is only one solution being sought.
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many points and many manipulator configurations. This however is very
lengthy and not at all general. Alternatively, we attempt to give a few
general remarks about zones.

When on the boundary of the zone of reachable space, the hand
cannot be moved in an arbitrary direction or rotated about an arbitrary
axis. Another way of saying this is that the hand cannot move along an
arbitrary screw. Mathematically this happens: whenever the detcrminant
formed from the left-hand sides of equations (4.13) and (4.14) vanishes.
The existence of a solution would enable us to express the W. and r

i
appearing in (4.13) and (4.14), in terms of the hand position and

i ’

orientation. Then forming the determinant we would have a polynomial in
terms of the hand position and orientation whose vanishing would correspond
to the boundary of reachable space. We would then have a surface in
six-space which bounds reachable space.

As this representation is highly non-linear, as well as dependent
upon the existence of a solution, it is often more fruitful to examine
the problem from a geometrical viewpoint. For example, consider the
6R,5355 manipulator with all adjacent pairs of axes perpendicular, as
is shown in Figure 7.1. We note that the wrist point, W , defined by
the vector P , can lie anywhere within a sphere of radius r about the
shoulder point, O , where:

(53-55)25 rl< (33“5)2 (7.1)
Furthermore, if the wrist position is fixed, then the direction the
hand points, defincd by ag in Figure 7.1, is arbitrary. Through
appropriate rotations in joints 5 and 6, &g can be made to point in

any direction. However, the total orientation of the hand cannot be
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arbitrarily specified for a fixed wrist point as the direction defined
by w in Figure 7.1 is limited in range. We rote that g must
always be perpendicular to w5 . 'Hence, g may lie anywhere in a
plane perpendicular to g . Now the specification of the wrist

1
point does not fix the elbow point, A, and in fact the triangle OAW may

be rotated about P . We observe, then, that 96 must lie on a cone
whose axis i3 P , with apex at W and whose cone angle is fixed by

triangle OAW. Then W _ will lie in planes through W , perpendicular

6
to the elements of this cone. This defines a second cone, inside which
86 can never point. These cones are shown in Figure 7.2. Referring to

Figure 7.2, the elements of cone 1 form the locus of ‘35 while ‘ﬁﬁ will
always lie outside cone 2.

If it is desirable for the hand to have a full range of orientation
freedom, then a manipulator whose: last three joints are revolute and
whose axes intersect is appropriate. (Consider such-a configuration,
shown in Figure 3.8. Here the last three axes intersect and provide
maximum orientation freedom for the hand. In addition this configuration
has a wide range of positions that the wrist point, defined by P,
can assume. Referring to Figure 3.8 we note that the wrist point can be
placed anywhere inside a circle normal to axis 2, about P, , vhose radius
r obeys the constraint:
)2

(82'84)2 < rzg (a2+84

Rotation of the first joint then rotates this circular anulus to generate

(7.2)

a torus which is the locus of points the wrist can reach.

It is possible to examine many manipulator configurations in this
manner. Table 7.1 presents the results of such examination of 6R manipu-
lators with two and thresz non-zero link parameters. Whether or not a
solution exists is also included in Table 7.1.
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Solubility and

Orientation Restrictions in 6x Manipulators

TABLE 7.!

MANIPULATOR REMARK MANIPULATOR REMARK MANIPULATOR REMARK
'1 a,s, D 16. ajzsj3 D 31. s,a, n
2. aja, D 17. LPLES SG 32. s,sg n
3. a133 D 18. a:sy SG 33. s,aq D
4. aja, S G 19. aja, N R 3&. a,8¢ D
5. as, SG 20. ajsg SR 35. ajag D
6. aa, S G 21. ajaq SR 36. sgag D
7. a8 D 22. s3a; D 37. ajsjay D
8. 1;a, D 23. 838, SG 38. a;sjs, D
9. 8ja, D 24. 833, SG 39. a;sja, SG
ho. 8584 D 25. 8385 SR 40. ajsys, SG
1. sya4 SG 26. sjas SR 41, a;s,ya, SG
12. 8,8, SG 27. a3y D 42. a)8,8 D
13. 8,8, S G 28. ajay S G 43. a,8,a, D
14. 8,85 D 29. a,s8¢ S R 44, aja,s,g D
15. LPLP D 30. aqaq SR 45. aa,a, SG
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Table 7.1 (continued)

———ced  Sameesd

MANIPULATOR REMARK MANIPULATOR REMARK MANIPULATOR REMARK
6. a a8, S G 63. a,a,ag SR 80. s,s,8, SG
47, aaja, N R 64. a;8qag D 81. 3,8;,85 S G
[p8. ajassg SR 65. sjazsj SG 82. 88,8 S R
*9. ajazag SG 66. s,aja, SG 83. 858,85 S G
50, a,8484 SG 67. sjass, SG 84. s,a,a4 SR
51. a;848, SG 68. sjajay N R 85. 8,8, 8 D
52, ajsj3a, NG 69. 8,8,8, SR 86. a;sqag SG
53. ajps3ss SR 70. sjajag SR 87. a,8,8, S G
54. a;sjag SR 71. 8,848, SG 88. a,sqa, NG
55. aja,s, SG 72, 85838y SG 89. ajsqsg SR
56 . aaja, N R 73. 89838, N R 90. ajsjag SR
57. ajajzsg N R 74, 898484 SR 91. ajajsy SG
58. a)a;a N R 75. 8y85a¢ SR 92. ajaja, N R
59. a;s,8, SG 76. 8,8,8, SG 93. ajagsg N R
0. ;8,8 SR 77. sjaiqay N R 94. ajajag N R
||
1. a;8,8¢ SR 78. sja3sg N R 95. ays,a, N R
-
b2. a,a,8; SR 79. sjajag N R 96. ajzs;sg N R
-11%-
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H Table 7.1 (continued)
MANIPULATOR REMARK MANIPULATOR REMARK MANIPULATOR REMARK
l L)
l L7- 328“&5 NR «s5. 83844, SG 113. aj3s,ag SR
] 98, 8,8,8¢ NR 106. 83848 SR 114, a,a8,8¢ SR
l I99. a,8,8¢ N R 107. s3s,as SR 115. aja,ag SR
100, a,85ag SR 108. sja,ss Sk 116. aj3ssag SR
l 101. sqa3s, SG 109. sja,aq SR 117. s,a,8¢ D
i] 102, 83338, SG 110. s3sgag SR 118. 8,8,8¢ D
[l 103. sjaysg SR 111. a;8,a¢ SG 119. 8,8585 D
[] 104. 838385 SR 112, 848,85 SR 120, 348535 D
[] Key to Remarks: D - degenerate R - Restricted orientation for
S - Soluble reachable wrist positions
N - Insoluble G - No orientation restriction

for reachable wrist positions
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7.2 Additional Considerations

Aside from kinematic considerations, there are many less objective

crit~ria in choosing a manipulator for use with a computer system.

the seke of completeness we mention some of these additionel considerations,

and give a few remarks about several of the more important ones.

1.

2.

Ease of Interface with a Digital Computer.

The actuators of a manipulator must be such that their
control may be easily assumed by a digital computer.
In addition position feedback must be available.

This will generally be from potentiometer or shaft
encoders.

Power Source.

Manipulators are in general electrically, hydraulically, or

For

pneumatically powered. Electricity is universally available

and inexpensive. Hydraulic power provides the means for
converting a large amount of energy to motion with a
minimum of weight, thus an advantage where speed is
required. Pneumatically powered manipulators, working
off of air, are cleaner than hydraulic systems. However,
for safety reasons, they must operate at a much lower
pressure and therefore will have poorer dynamic response.

Structural Rigidity.

The structural members must have a minimum deformation
under load so that the position of the hand may be

accurately computed from the rotations in the joints.
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In addition the joints must contain a minimum of play
for the same reason.

Range of Freedom

It is desirable that each joint of a manipulator possess
a large range. Even though a position might be reachable
from a kinematic point of view, the physical limits on
actuators will greatly reduce the range of these. In
fact, many of the problems encountered while using the
obstacle avoidance programs were due to the very
restricted range of motion on the electric arm

(Figure 6.6).

The Outline of the Manipulator.

We would like the manipulator to have a slim outline
so that it could work in tight places. 1In addition
a smooth profile might be desirable so that it would
be easily recognizable in a T.V. image.

Other Factors.

Additional factors to be considered are: precision,
speed, cost controllability (i.e., the ability to

follow a prescribed path), and safety.

When choosing a manipulator we cannot hope to maximize all of these

accuracy.

considerations. Many of these are influenced by the type of task per-
formed by the manipulator. For example, if a goal for the hand-eye system
is to assemble a machine containing small electronic components, the

manipulator must be capable of very delicate movement and position

For tasks involving throwing or catching objects, the arm
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must be able to move rapidly, and be accurately controlled. Thus some
applications require obvious tradeoffs (e.g., precision and speed),
and in others certain considerations predominate.

From experience with the two manipulators used at the Stanford
Artificial Intelligence Project we may make some comment on specific
arms. The project presently has two arms. One is a modified electric
prosthetic arm (Figure 6.6). The other is hydraulically powered
(Figure 7.3).

The d.c. electric motor driven arm has proven acceptable for
stacking blocks. After some experimentation, a rate modulated pulse
dc system seems to be an-excellent way to contro] the arm. With position
feedback via potentiometers, and an external pover supply, it is
satisfactorily interfaced with the computer. ~.owever, it is somewhat
lacking in the range of freedom and structural integrity - problems that
could be overcome with a second generation arm of this tvpe. It is not
particularly fast nor particularly precise. The precision problem stems
partly from the poor structure, and partly from the control problem
caused by the inherent inertia in the motors. It is expected that with
refinement of the control scheme, the precision and controllability could
be considerably improved.

Although experience with the hydraulic arm is limited at this time,
it shows promise of great speed. It also appears structurally sound,
and has a wide range of freedom in its joints. It is somewhat massive
due to its high speed and torque capabilities. At this time, the control
problem using two-stage servo-valves appears soluble. The physical danger

to personnel and equipment is obvious and this arm is housed in a room
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Figure 7.3. Hydraulic Arm at Stanford Artificial Intelligence Project.
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isolated from the computer. This makes the interface with the computer
T.V. system difficult, though soluble. Ia addition the forces involved
require that the arm be firmly anchored to the floor.

At present these manipulators are used for fairly simple tasks.
As the hand-eye program becomes more advanced the tasks will become
more involved. At some future time, then, one might expect to be able
to say more about choosing a manipulator for computer control in a more

complex environment.
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CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FCOR FUTURE WIRK

In this dissertation, the kinematic problems associated with
manipulators have been explored. It is hoped that the classification
scheme and catalog of manipulators, presented in Chapter II, will lead
to manipulators being compared on a scientific basis. Manipulators whose
exteriors seem much different, are often kinematically equivalent. Thus
solutions for one manipuletor are applicable to another.

It is seen that the problem of positioning a manipulator is directly
related to the displacement analysis of mechanisms. The solutions
presented for cases with three revolute axes intersecting at a point
seem to be previously unknown. These resulis therefore represent a
contribution to spatial linkage analysis.

It is felt that these solutions, along with the exteunsion to the
special cases with only pairs of axes intersecting, give insight into
the kinematic analysis problem for tuhe most general six degree-of-
freedom manipulator. That is, for the special case of three intersecting
pairs of axes, four different configurations were found leading to the
same hand position and orientation. For two pairs of intersecting axes,
eight configurations were found, and for only one pair of axes inter-
secting, sixteen configurations were shown to be possible. 1In all of
these special cases, adjacent axes were orthogonal, and the adjacent
common normals intersected one another. Since no axes nor adjacent

common normals intersect in the most general problem, it is almost
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certain that the general problem has even more possible configurations
leading to the same hand position and orientation.

The possibility of a very large number of configurations indicates
that, even if a2 solution to the general problem could be expressed as a
single polynomial in one unknown, tuis polynomial would be of such a high
degree that it would be impossible to find all the roots. We conclude,
then, that the complete solution to the most general problem is not at
this time technically feasible: perhaps, someone, someday wili solve the
problem. Kinematicians have been trying for over 50 years.

The iterative technique, based on velocity, was found to be superior
to the Newton-Raphson method both in the amoun<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>